& \ U"w *

ICALEZPCS -
TUPPCO11

ABSTRACT

ICHAOS is an INFN project aimed at the definition of a new
control system standard for large experimental apparatus and

INFN

ontrol system based ona ' 'ighly ' bstracted and

particle accelerators based on

framework and control services concepts. |[CHAOS has been
developed to address the challenging requirements in terms of
data throughput of the new accelerators under study at INFN.
One of the main components of the |ICHAOS framework is the

historical engine (HST Engine),

optimized for the fast storage of large amount of data produced
by the control system’s devices and services (I/O channels,
alerts, commands, events, etc.), each with its own storage and
aging rule. The HST subsystem is designed to be highly
customizable, such to adapt to any desirable data storage
technologies, database architecture, or indexing strategy and
fully scalable in each part. The architecture of HST Engine and
the results of preliminary tests for the evaluation of its

performance are presented in this paper.

The Data Flow

By checking the medium data-pack
size of the devices, and its pushing
rate, the registered CQL Proxies are
“allocated” to the devices in order to
load balance the network
Infrastructure and the total
computing power.

DeV|ce 2

STORAGE
ACCESS

STORAGE

ACCESS
POINT

THE ICHAOS FRAMEWORK

The ICHAOS framework has been designed after an in- depth evaluation of the In ICHAOQOS the data storage is provided by the service called History (HST) Engine. This conceptual
new software technologies for data transfer and data storage emerging from design will allow an innovative storage system for a Distributed Control System, giving [CHAOS an

Storage

Subsystem

A Front End Controller, i.e. a

ICHAOS Control Unit (CU),
starts the writing process by
pushing a dataset to one of
the storage subsystem CQL

Proxies.

STORAGE ACCESS POINT

Cache Storage Index
Driver Driver] Driver

Abstract Loglc Abstract Loglc

Device n
STORAGE
ACCESS
POINT
—MB in Cache —MB Produced MB Stored in the File System

2000

1500

MegaBytes
(=Y
o
o
o

500

N‘.

0 100 200 300 400
Seconds

500

Fig 1: The results of the simulation, showing the amount of MB in

cache, produced and stored in the file system.

lake Part!

Common Integration System:

pen

regardless the device

TEST RESULTS

The components described so far, related to the staging and moving mechanism, have been tested
off-line by using a software simulation of these two phases. The fusing phase has been removed
from the numeric tests because is not fundamental for the data acquisition process: it is used once
the data is already safe on the file system. The tests have been run on a mid level Mac Pro with two
2,8Ghz Quad-Core Intel Xeon, 18GB of DDR2 RAM, and a SA T A2 SSD hard disk. The graph shown
here (fig. 4) is obtained by using two Producer processes simulating ten devices running with 50

threads each, and a single consumer process running on five threads. The average data produced RI—I—I_RI_NCES
by the simulated devices is 3,5 MB/s simulating 515 channels pushing data packets of 68 B at
100Hz. The test environment is like a worst-case scenario for this algorithm, because it cannot gain
performance by a distributed file system and a multitude of proxy machines. In fact the data rates
obtained can grow almost linearly by increasing the number of proxy machines and using a more Beams 15, 112804 (2012).

appropriate file system. The graph in figure 4 shows the three fundamentals measurement in the [8] L. Foggetta etal., “Progresses on !CHAOS development”,
caching system: the data produced by the devices (in red), the data actually in the cache files (in
blue) and the data actually stored inside the device logical files (in green). More intensive tests will be

For each CQL Proxy a logical path is created in the
distributed FS. To improve the performance of the
system each proxy can allocate a pool Qf threads e
with the only task of getting the packets received
by the proxy and start the allocation i
system.

Proxy

that
produced them, starting to write
them in files inside the path
associated to the Proxy.

tructure

Each thread will fetch the data
packets from the

G Develo

pment of an Innovative Storage Manager

for a Distributed Control System
M. Mara INFN-AC, Frascati, Italy

C. Bisegni, G. Di Pirro, L.G. Foggetta, G. Mazzitelli, A. Stecchi, INFN-LNF, Frascati, Italy

UUID1_cache2

FILE

L. Catani, INFN-Roma2, Rome, ltaly

THE ICHAOS STORAGE ENGINE

Innovative communication the development of high-performance Internet services, such as the Important technology advantage against other equivalent most popular standard for controls. The
non-relational databases (NRDB) and the distributed caching system (DCS). main ideas at the base of the data acquisition process are the following: a distributed file system is
Both are designed for a high degree of horizontal scaling that allows the used to store data produced by machine operations while a KVDB manages the indexes structure
insertion and retrieval of the data at the highest possible throughput, limited (howadays candidates are Hadoop [7] and MongoDB [8] respectively). These tools have been chosen
only by the saturation of either the available bandwidth or the network thanks to their diffusion in the scientific community for solving similar problems and the abundance

a cloud-like environment connections of the subsystem. of use cases to which learn from. The functionalities of the |\CHAOS HST Engine are allocated to three
While the NRDB logics and techniques are used to implement the indexes dedicated components, or nodes, namely the {CHAOS Query Language (CQL) Proxy, the Indexer and
management and the fast data retrieval the DCS is used to provide the “live the Storage Manager.
data sharing”, a scalable service for sharing the real-time device data. This
software provides in-memory key/value storage and permits fast accesses to Thanks to the chosen implementation, it is possible to increase the overall performance of the system
the same key/value by many concurrent clients. This caching layer avoids by scaling different components. A faster writing mechanism for the devices can be ensured by
overloading the front-end controller with multiple reading accesses from clients Increasing the number of proxies writing in a parallel way inside the cache. The transfer process
that need to fetch data of a device. between cache and device logical files can be increased by incrementing the number of managers
These two software technologies represent the core components in the design checking the packets acquired; the indexing procedure can be improved by increasing the number of
of the new control system named !CHAOS [1, 2, 3]. indexer nodes.

After the “Moving” phase (Figure 3), every chunk of the
logical file will be ordered in time (every data packet
! — o 1 LL has timestamp >= than the previous one). Anyway two
ol K[s | or more LF chunks can be overlapped in time (a side
L - effect of the fast moving phase).

device2_DPn| |

device2_DP2}} device2_DP3] ---

Device 2 Time-Ordered Cache File Structure

4] -+~ | device2_DP8

Device 2 Time-Ordered Cache File Structure Device 2 Time-Ordered Cache File Structure

Device 2 Thread Pool

Device 2 Time-Ordered Cache File Structure

Device n Thread Pool

Device 2 Time-Ordered Cache File Structure Device 2 Time-Ordered Cache File Structure

L] Y > II L L] — .Y II

L] | W | ‘II L L} .3 AI I n L} AR I

| | device2_1 “ device2_2 “ deviceN 1“ device2_3 | --- | deviceN_n

Generic Cache File Structure

prlvate ahe
valid (in terms o

available for the n

all the Chunks related to a
specific device

File Chunk

A Chunk is a Physical File containing
all the Data Packs related to a specific
Device and portion of time

Chunk_Size = At x Packet_Size

- chunk and the device logical
ored inside a distributed file system.

our current best candidate, is a Sampled Data Pack
distributed file system that provides high Device. iontfication: Devico.tD

Attribute W : Value W

*throughput access to data, by automatically Atribute X Value X

Attribute_Y : Value_Y

replicating it in the other servers of the cluster Attribute Z : Value_Z
ensuring a full redundancy of the system.

[1] http://chaos.infn.it
[2] L. Catani et.al., “Introducing a new paradigm for accelerators and
large experimental apparatus control systems”, Phys. Rev. ST Accel.

_ E e d W, .
Proceedings of IPAC2012, New Orleans US, http://www.JACoW.org

4] http://bsonspec.org | http://chaos.infn.it

[5] http://hadoop.apache.org [6] http://www.mongodb.org

run in the next months on the other parts of the storage system now under development.

N

tp://cvs.Inf.infn.it:8080

.1.
— Ll

Institutional Git Repository (Public Read Access) s
tps://cvs:Inf.infn.it:8443/chaosframework.git &

N

Public Git Repositories:

https://chaosframework.atlassian.net

