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cRIO is a reconfigurable embedded control and acquisition system developed by

Programmable Logic Controller (PLC) is commonly used in industries and research applications for process control. National Instruments, integrating a real-time controller, a reconfigurable FPGA
However a very complex process control may require algorithms and performances beyond the capability of PLC’s, very and 1/0 modules. The real-time controller consists of a powerful processor for

high-speed or precision controls may also require other solutions. performing autonomous and deterministic applications. The FPGA is a program-
mable logic circuit, comparable to the hardwired logic.

cRIO has been used at CERN in a recent research conducted to implement advanced process controls (decoupling of
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Performance assessment of the cRIO for advanced control systems: the CERN SPS beam transfer lines To study and evaluate the performance of the cRIO FPGA for signal processing, it is necessary to im-
(several magnets in series supplied by one power converter and correction by bypass). plement more complex algorithms.
PROCESS PROCESS MODEL KALMAN FILTER THEORY
U = LE +RI+ 1L, an + R, + L, aly +R,L, + L, alz + Rl + Lé% + R, The Kalman filter is a powerful and useful mathematical tool in the embedded system. It allows to estimate the state of a system, depending on its
—'-——, at at a at at previous state, controls applied and noisy measurement.
. U =1, % + Ry, + R (L — 1) Equations of a discrete Kalman filter are divided into two stages (prediction and correction):
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PROCESS SIMULATION
Step response of the main power converter Step response of the bypass 1
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€ O process is coupled, the step response to an input affects all outputs The calculation of the inverse matrix has been implemented in the FPGA with the Laplace formula A= 2ot A com A
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In order to adjust the dynamic in close loop by pole placement, we add an additional corrector with the state feedback ¥ = E — KX
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Process, decoupling corrector and pole placement feedback Corrector implementation in the FPGA
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RESULTS RESULTS

Step response

In order to test Kalman filter implemented in the FPGA, the test was realized on a process with the following state-space representation
With the advanced process control (MIMO decoupling), the inputs are decou-
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. . S The dynamic of each subsystem can be adjusted (here with pole at -70, time L 1 i —1 0o 0 1

. constant is 14ms).

Process simulation Noisy state Estimated state with Kalman Filter Error estimation
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Robustness
The robustness of the system is also insured, a perturbation on an output does

not affects other subsystems.
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The acquisition time of the I/O modules and the treatment for the MIMO

advanced control is 10ps. The algorithm performs in 2020 cycles, or 50us with a clock rate of 40 MHz.

SUMMARY

The speed of the FPGA in the cRIO and the toolbox from Labview allows the implementation of complex calculations in order to achieve the advanced control process command and the signal processing.

The cRIO technology is a very good solution in comparison to the PLC for a fast and advanced control process, the computation time is about few 10us against 20ms to 50ms for the PLC (depending on the com-
plexity of the process and the number of I/0 modules).



