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Optical Flaws Need to be Blocked. Flaws are Identi�ed by Their Di�raction Pattern. 

To optimize laser performance and minimize operating costs for high-energy laser shots it is necessary to locally shadow, or block, flaws from laser light exposure in the 
beamline optics. Blockers are important for temporarily shadowing a flaw on an optic until the optic can be removed and repaired. To meet this need, a combination of image 
analysis and machine learning techniques have been developed to accurately define the list of locations where blockers should be applied.  The image analysis methods 
extract and measure evidence of candidate sites and their correlated downstream hot spots and this information is passed to machine learning algorithms which calculate 
the probability that candidates are flaws that require blocking. Results show that the machine learning helps to significantly reduce false alarms compared to the image 
analysis methods alone. Ten-fold cross validation of the refined training set shows about 99% of the 30,000 candidate sites are rejected, leaving only 1% (300) to be brought 
forward for review; about a sixth of those brought forward are false alarms compared to hundreds or thousands using image analysis alone. In practice, we see from 0 to 3 
false alarms per image with over 98% true positive detection.

Flaws in laser optics diffract light passing through them, causing a diffraction pattern (or “hot spot”) to appear 
on downstream optics.

If we can identify hot spots we can place a blocker 
in front of the flaw.

To Locate Potential Hot Spots, First Find Peaks and Rings

To find bright peaks To find rings

Then Analyze Each Potential Site and Collect Data

Fill each site using an adaptive fill algorithm, Measure the filled region properties Compute the co-occurrence matrix of the intensity region and measure

Image of a Wedge-Focus Lens (WFL), showing
evidence of a flaw on an upstream optic
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Each method finds a different set of potential sites, so we combine the results of each
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z = distance from flaw to image plane, r = distance of image pixel from pattern center, 
R = defect radius, λ = light wavelength, J[1,x] = Bessel equation of the first kind
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mean

1.  Use centroids of previously detected 
sites as seeds

2.  Iteratively add neighboring pixels in 
nonincreasing order of intensity

3.  Stop iterating when predefined 
threshold has been reached

 Region:
• Area
• Axis Length
•  Perimeter
•  Solidity
•  Extent
•  Euler Number

• Contrast
• Correlation
•  Energy

Use Machine-Learning to Classify Sites

Tuning the thresholds and other analysis parameters above was not sufficient to adequately weed out false alarms 
without losing true positives. Instead, we set the parameters very generously, allowing many false positive 
detections and then applied machine learning techniques using the Avatar suite of machine learning tools (Chawla, 
et al.) to eliminate them: 
1.  Feature Extraction. All candidate sites found with the image analysis were recorded along with many     
  measurements for each, such as: area, aspect ratio, size of the bounding box, solidity, Euler number,     
  peak-to-mean, disk radius, radii ratio, fringe contrast and similarity to the ideal template. 
2.   Semi-supervised learning. To create a training set, over 30,000 measured candidates needed to be labeled with  
 groundtruth. A small number of known real sites were labeled manually; all remaining candidates were labeled  
 as false alarms without evaluation. Initial training of the classifier revealed the labeling errors. After correcting  
  these and iterating a few times, the training set was refined and the classifier was correctly predicting real sites  
  of interest, including some missed in manual inspections.

Evaluating the results with ten-fold cross validation of the refined training set showed 99% of the 30,000 detected 
candidate sites were rejected, leaving only 1% (300) to be brought forward for review; about a sixth of those brought 
forward were false alarms (primarily out-of-range, i.e. not of interest diffraction rings). Additional training may help 
reduce these as well.  In practice, over 98% of true positives are brought forward and the generated report 
accurately reports trends and presents a list of sites to be blocked.
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