
Abstract

Plugin-based software architectures [1] are extensible, enforce modularity and allow several teams to work in parallel. But

they have certain technical and organizational challenges. We gained our experience when developing the Post-Mortem Analysis

(PMA) system, which is a mission-critical system for the Large Hadron Collider (LHC). We used a plugin-based architecture with

a general-purpose analysis engine, for which physicists and equipment experts code plugins containing the analysis algorithms.

We have over 45 analysis plugins developed by a dozen of domain experts. This paper focuses on the design challenges we

faced in order to mitigate the risks of executing third-party code.

R. Gorbonosov, G. Kruk, M. Zerlauth, V. Baggiolini, CERN, Geneva, Switzerland

14th International Conference on Accelerator &
Large Experimental Physics Control Systems
October 6-11, 2013, San Francisco, California

2. Plugin execution

A simplistic approach would allow plugins to execute

autonomously notifying each other about produced results.

Seeming natural, this approach compromises the overall

analysis execution in case a plugin fails with exception. It

also forces the domain experts to keep track of incoming

data and to send notifications.

In PMA the framework controls the plugin execution

entirely. This guarantees the execution of all the analysis

logic and simplifies the code of plugins.

1. Background

The Post-Mortem Analysis (PMA) performs an exhaustive

analysis of the behavior and state of the key LHC components.

Analysis implementation requires detailed domain knowledge.

Therefore domain experts contribute to the overall analysis

writing analysis plugins executed by general-purpose engine.

Domain experts are not professional programmers and prone

to make mistakes. Plugins are executed in certain order:

subsequent plugins consume the output of previous plugins.

Conclusions

The PMA framework has been used operationally for several years and proved to be very extensible, flexible and reliable. At

CERN there are currently 4 mission-critical LHC applications based on the PMA framework: Global PMA [3], Injection Quality

Check [4], External Post-Operational Check of LHC beam-dump system [5] and Powering Event Analysis. In total there are over

45 analysis plugins developed by a dozen of domain experts. Such a broad adoption would have never been possible without a

plugin-oriented architecture and the design decisions described in this article.

REFERENCES

[1] http://en.wikipedia.org/wiki/Plugins
[2]http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
[3] M. Zerlauth et al, “The LHC Post Mortem Analysis Framework”, TUP021, ICALEPCS
2009, Kobe, Japan

PMA workflow

single-domain
analysis plugin

single-domain
analysis plugin

single-domain
analysis plugin

...

cross-domain
analysis plugin

cross-domain
analysis plugin

...
overall result

analysis plugin

result

result

Simplistic approach PMA approach

finished

throws
exception

waits
forever

X

starts

finished

throws
exception

P
M

A
fr

a
m

e
w

o
rk

3. Plugin misbehavior

There are many ways a plugin can fail: it can block, access

resources or services too often, produce an enormous amount

of data. A simplistic approach would let plugin access the

resources and services directly. Seeming the simplest, this

approach compromises the overall analysis execution. A plugin

overloading services used by other plugins can potentially

bring the services down preventing other plugins from

finishing successfully.

In PMA each plugin is executed in a special environment

which provides access to resources and services via proxies.

The proxies allow the framework to intervene if plugin

misbehavior is detected.

Simplistic approach PMA approach

analysis
data store

external
services

plugin

DB

execution
log

analysis
data store

external
services

execution

environment

plugin

DB

execution
log

4. Inter-plugin communication

Inter-plugin communication requires the definition of

clear contract between communicating plugins:

* data container and format (XML, JSON, hash maps, etc.)

* data content (data items and their representation)

A simplistic approach would allow the plugins to produce

data in their own formats. Seeming flexible this approach is

chaotic and introduces complexity for the consuming plugins.

In PMA we have chosen maps with key-value pairs as the

standard data format.

The standard format provides no guarantee for the data

consistency. Neither it allows to find out at development time

which data items are expected and how data items are

represented. In PMA map data containers are wrapped into a

data-specific Java beans [2]. Java beans allow the data

consistency check at runtime. In addition, the developer of a

Java bean wrapper over map data container

consuming

plugin gets the

full power of

compilation

check and IDE

code-

completion.

Java bean:
double getCurrent()
String getMode()
String[] getFaults()
checkConsistency()

Map data container:
current:25.8
mode: “ON”
Faults: [“A”, “B”, “C”]

result

result

result

result

[4] L. N. Drosdal et al, “Automatic Injection Quality Checks for the LHC”, WEPMU011,
ICALECS 2011, Grenoble, France
[5] N. Magnin et al, “External Post-Operational Checks for the LHC Beam Dumping
System”, WEPMU023, ICALECS 2011, Grenoble, France

