
ICALEPCS’13

GROOVY AS DOMAIN-SPECIFIC LANGUAGE
IN THE SOFTWARE INTERLOCK SYSTEM

Abstract

J.Wozniak, M. Polnik, G.Kruk CERN, Geneva, Switzerland

14th International Conference on Accelerator &
Large Experimental Physics Control Systems
October 6-11, 2013, San Francisco, California

Domain Model

The SIS system helps protecting the machine by surveying the state
of the devices. It continuously evaluates user-defined conditions and
dumps or inhibits the beam production if an abnormal situation is
detected. The SIS is designed to protect the machines against repetitive
faulty conditions limiting radiation, extending the equipment lifetime
and making the machine diagnostics much easier.

DSL Language Features

The main advantages in the new configuration approach leveraging
a DSL are significant improvements in terms of productivity and
support for domain-oriented features:

Configuration Process Comparison

Being originally designed for describing documents, XML is not
well suited to accommodate condition logic. Its definition, although
possible in XML, makes the document verbose and difficult to read.
Moreover, requirements for typical programming language
constructs like include directives, variables and control statements
have also become desired features in SIS. According to these needs
a Velocity template language was introduced to pre-process and
generate the final XML files. Overall the typical configuration as a
mixture of Velocity statements, XML tags, Groovy scripts and
references to Java classes was neither maintainable in the long
term nor straightforward to handle.

The aforementioned issues in SIS framework were mitigated
after adopting the DSL approach for defining constraints that must
be satisfied for running systems safely. There are no restrictions
concerning the programming logic used in conditions. They can
perform computations, access system components or check the
status of devices using features implemented in the DSL making the
process of providing user defined logic more flexible and robust.
Moreover, the workflow of the configuration handling startup has
been simplified as well. Groovy Shell transparently compiles the
configuration to a single script class and to a set of inner classes
containing user defined conditions. Assuming there were no
compilation errors, the script is executed to create a tree-like object
representation of the configuration. This intermediate structure will
be used to instantiate and wire up the application components.

CONCLUSIONS

Taking the DSL approach for the SIS configuration proved itself to be the right choice in practice. Its interoperability with Java on the binary
level is a great advantage opening ways for the implementation of the DSL in a mixed Java & Groovy mode. Also its build-in features targeting
directly the DSL construction make the design of such language much easier. The corresponding files are much smaller and more readable
comparing to their XML counterparts. At the same time the configuration is more concise with all its entities represented as Groovy code

constructs. Overall it improves significantly the level of user satisfaction and maintainability of the system as a whole.

XML DSL

#set($virtualDev =["BTY.VSISQDE209",
"BTY.VSISQFO210","BTY.VSISDHZ211"])

#set($hardwareDev = ["BTY.QDE209",
"BTY.QFO210","BTY.DHZ211"])

#macro(isoChannel $name $virtualParam)
<Isic id="$name">
<ValueCondition param="$${name}" operator="<"
refValue="100"/>
<Exporter beanId="timingExporter">

<Trigger event="SKIP_IF_MASKED"/>
</Exporter>

</Isic>
#end
#foreach($device in $hardwareDev)
#set($virtualParam = $virtualDev
[$foreach.index])
#isoChannel($device $virtualParam $device)

#end
<Permit id="ISO_GPS_PERMIT">
<LogicalCondition operator="AND">

#foreach($device in $hardwareDev)
<Test refid="$device"/>

#end
</LogicalCondition>
<Exporter beanId="timingExporter">

<Trigger event="ON_EVAL"/>
</Exporter>
<UpdateEvent>

<![CDATA[
return isTriggerId("tgmTelegram")

]]>
</UpdateEvent>

</Permit>

def virtualDev = ["BTY.VSISQDE209",
"BTY.VSISQFO210","BTY.VSISDHZ211"]

def hardwareDev = ["BTY.QDE209",
"BTY.QFO210","BTY.DHZ211"]

def isic = {String name, String virtualParam ->
 isic(id:name) {
 valueCondition {
 return $(name) < 100
 }
 exporter(beanId:"timingExporter") {
 trigger(event:"SKIP_IF_MASKED")
 }
 }
}
for(int i=0; i < virtualDev.size(); ++i) {
 isic(virtualDev[i],hardwareDev[i])
}
permit(id:"ISO_GPS_PERMIT") {
logicalCondition {

 return channel(virtualDev[0]) &
channel(virtualDev[1]) &
channel(virtualDev[2])

 }
 exporter(beanId:"timingExporter") {
 trigger(event:"ON_EVAL")
 }
updateEvent {

 return
"tgmTelegram".equals(it.getTriggerId())
}

}

After 7 years in operation the Software Interlock System (SIS) has become an indispensable and mission-critical controls tool covering many
operational areas from general machine protection to diagnostics. The growing number of running instances as much as the size of existing
configurations have increased both the complexity and maintenance cost of running the SIS infrastructure. In response to those issues, a new
ways of configuring the system have been investigated aiming at simplifying the configuration process by making it faster, more user friendly and
understandable for wider audiences and domain experts alike. As one of the possible choices the Groovy scripting language has been considered
as being particularly well suited for writing a custom Domain-Specific Language (DSL) due to its built-in language features like native syntax
constructs, command chain expressions, hierarchical structures with builders, closures or Abstract Syntax Tree (AST) transformations. This
document explains best practices and lessons learned while introducing an accelerator physics domain oriented DSL language for the
configuration of the Software Interlock System developed by the Data & Application Section at CERN.

DSLXML

Configuration

Compilation
on demand using

Java API

Bootstrap

Transparent
compilation using

Groovy Shell

SIS Application

User logic
as Groovy scripts

SIS Application

User logic
as Java classes

Text Processing

Template generation

Source extraction
from XML documents

Source code
instrumentation

DSL Interpretation

Abstract Syntax Tree
Transformations

Language Specification

Overview of the workflow in both configurations

Legend

Individual Software Interlock Channel (ISIC)
Comparisons of values reported by sensors
with predefined thresholds or value ranges.

Logical Software Interlock Channel (LSIC)
Groups ISICs with semantic or spatial
relationship. Its state corresponds to the
result of a logical operation applied on all its
dependent ISICs.

Permit
Combines ISICs and LSICs into a hierarchical
structure. A predefined event triggers the
tree evaluation and the outcome is used to
execute an action.

config

start

valueConditionupdateEvent logicalCondition

isicpermit lsic

channelcounters

counter

exporter

trigger

SIS DSL Language Model

Example configuration in XML and DSL

§ Service locator
§ Access to device sensors

§ IDE assistance
§ User-defined conditions
§ Self-documenting configurations

	MOPPC142.vsd
	Page-1

