

00 Abstract

A Message based Data Acquisition System

A.Yamashita, M. Kago
SPring-8/JASRI, Hyogo, Japan

01 System

03 High-
Performance

02 Messaging

The system is built on the three-tier standard model of the
accelerator control system.

The data source on embedded computers send messages to the relay
processes on the server computers via Ethernet networks.

The relay processes relay messages to the writing processes which
convert messages to database formats and write them to the databases.
The relay servers also publish messages to other processes which
subscribe to messages by arbitrary keywords.

The writer receives messages, process them and send to the database
using the individual API. One relay server sends messages to one or more
writers and no cross connections between relays and writers i.e one
writer received from one relay servers. In the writer, the receiving thread
and the writing threads are separated.

The receiving thread sends messages using in-process publish and
subscribe pattern. Currently two writing threads write data to the
databases. Relay server and writers has been prototyped by Python and
implemented in C++.

Data sources send messages to multiple servers in round robin way
that enhances the scalability and reliability. The multiple relay server
may cause broken the order of the message. The older messages may come
after new messages. We observed no order breaking at long run test but it
could happen with high density data.

05 Reliable
We examined behavior in the process fails. When one relay process

failed, the writer process sent messages to the other relay process after
the buffer was filled. After the relay process brings back the messages in
the buffer sent to the relay process. Because the size of the buffer was
adjustable, we were able to minimize the delay of the message.

04 Scalable

We performed a long term test run and measured its performance. The
names of signals are taken from real 47,397 SACLA signals. Simulated data
sources generated messages in 1Hz.

Three relay serves and 24 writer processes wrote to six node Apach
Cassandra cluster and two Redis servers. The speed of writes are over

06 Flexible

07 Conclusion
We constructed flexible, reliable, scalable and high performance data

acquisition system. This system will acquire and store data of SPring-8
during the run in the spring 2014.

data collector.
 We designed the new data acquisition system with the long
experience on MADOCA. We employ ZeroMQ messages packed by
MessagePack for communication. We obtained a high performance,
highly reliable, well scalable and flexible data acquisition system.

In SPring-8, we are constructing MADOCA II, the next generation
accelerator control framework. It will be installed in the spring of 2014. We
describe the part of the data acquisition system of MADOCA II. The old
MADOCA data acquisition system was built on the bases of ONC-RPC for
communication between embedded processes and

The messaging is asynchronous, one-way and no call back, that
enables fast and no-wait messaging. We use ZeroMQ messaging library,
which has multiple messaging pattern in multi operating system and
multi language environments.

We use ZeroMQ's pipeline (PUSH/PULL) and publish-subscribe
patterns with multi-part feature. One message has three parts one is
signal name, second is meta-data of the data and the last one is data.
Data and meta-data are packed by MessagePack, a object serialization
library which pack scalar, list, map and their combination structure into
one binary string.

six times higher than current SPring-8 writing speed
We continued writing tests for 24x7 in three months. We

examined Cassandra data and no data were dropped. We also
examined Redis data and no time reversal happened in this test
term. One relay process itself can handle over 180,000 messages per
second at Intel Xeon X3740 2.93GHz processor .

Flexible data format
By using MessagePack, user can send data structure like lists, maps and

their combinations without breaking down structure. Also user send just
a string. The system can replace syslog system to store system logs into
database.

Flexible data source
The main component of data source consist of ZeroMQ and

MessagePack, both are open-source, and run under multi-platform and
multi-language environments. So user can choose their platform and
language as their like. And the data source can send their messages at
arbitrary time.

Flexible data output
There are two ways to output message. One from writer process. It is

suitable to synchronous output. Another is subscribing from relay server
asynchronously.

A writer process have a receiving thread and number of writer
threads. The receiving thread sends messages to writer threads with
PUBLISH/SUBSCRIBE pattern. If one want to add another output, another
thread can be added without modification to receiving thread. User can
subscribe message from the relay servers in asynchronous way. User can
specify keywords tom subscribe messages.

For long run test, the new system coexist with the old system. We expect
the new system will serve the new generation accelerator like old
MADOCA system has been serving SPring-8 for a long time.

Data source

Data source

Data source

Data source

Database1

Writer

Writer

Database2

DatabaseWriter

Writer

Writer

Writer

Writer

Writer

Data source

Writer

ZeroMQ Push/Pull

ZeroMQ Publish

Database's APl

Relay

Relay

Relay

LGsr_mag_ps_b/current_adc

{tm:1380849642000000000}

1234.32

Structure of one message

One massage consist of three parts.
1st: Two letter keyword+signal name
2nd: Meta-data. Currently it is time stamp only, but
extendable.
3rd: data

The two letter keyword express kind of data. For
example, “LG” means log data and “AL” means alarm
data. One can subscribe specific kind of data using the
keyword.

2nd and 3rd data are serialized by MessagePack.
Therefore, data type is not limited only scaler but also
structured data like list,map and their combinations.

Writer process

Writing thread
For database1

Receiving
thread

Writing thread
For database2

In the writer process, receiving thread
publishes message to writing threads.
Writing threads are separated and another
thread can be added easily. It is suitable
synchronous output like databases.

Relay process

Publish

Relay process publish message. User can
subscribe message by header keyword and
signal names. For example if user want to see
alarm of signal name yyzz, one can receive
message by subscribing by “ALyyzz” keyword. It
is suitable asynchronous application like
Websocket server.

40+ languages including C, C++,
Java, .NET, Python.
Most OSes including Linux, Windows,
OS X.

17+ languages including C, C++, Java,
C#, Python.
Most OSes including Linux, Windows,
OS X.

{'dataA': [1.23, 3.56, 7.65], 'dataB': [9.87, 3.56, 55.22]}

'\x82\xa5dataA\x93\xcb?\xf3\xae\x14z\xe1G\xae\xcb@\x0cz\xe1G\xae\x14{\xcb@\x1
e\x99\x99\x99\x99\x99\x9a\xa5dataB\x93\xcb@#\xbdp\xa3\xd7\n=\xcb@\x0cz\xe1G\x
ae\x14{\xcb@K\x9c(\xf5\xc2\x8f\\'

Complex data structure is converted into 69byte string by MessagePack.

RelayData source

Data source

Data source

Data source

RelayDetect
automatically

RelayData source

Data source

Data source

Data source

Relay

One process is dead
No message is sent to
dead process.

RelayData source

Data source

Data source

Data source

RelayScaleout

Relay

Data source

Data source

Data source

Data source Overload

MOPPC130
ICALEPCS2013
San Francisco,USA.

	Slide 1

