
abstraction
boundary

live-data
(DOC) MD Server

DAQ
(KVDB)

commands
alarms

!CHAOS: the "Control Server" Framework
for Controls

We report on the progress of !CHAOS, a framework for the development of control and data acquisition services for particle accelerators and large experimental apparatuses. !CHAOS introduces to 
the world of controls a new approach for designing and implementing communications and data distribution among components and for providing the middle-layer services for a control system. 
Based on software technologies borrowed from high-performance Internet services !CHAOS offers, by using a centralized highly-scalable cloud-like approach, all the services needed for controlling 
and managing a large infrastructure. It includes a number of peculiar features such as high abstraction of services, devices and data, easy and modular customization, extensive data caching for 
enhancing performances, integration of all services in a common framework. Since the !CHAOS conceptual design was presented two years ago the INFN group have been working on the 
implementations of services and components of the software framework. Most of them have been completed and tested for evaluating performance and reliability. Some services are already 
installed and operational in experimental facilities at LNF.

In !CHAOS the DAQ, i.e. the machine data acquisition 
system, is provided by the service we call History (HST) 
Engine. A distributed file system (FS) is used to store data 
produced by machine operations while a KVDB manages 
the indexes structure; candidates are Hadoop and 
MongoDB  respectively. The functionalities of !CHAOS 
HST Engine are allocated to three dedicated components, 
or nodes, namely the CQL Proxy (where CQL stands for 
CHAOS Query Language), the Indexer and the Storage 
Manager.
Figure shows the data flow and the role of the before 
before mentioned nodes in data writing (red) and 
reading/querying operations. Grey lines are used to 
indicate internal actions and data flow.

For each CQL Proxy a logical 
path is created in the 
distributed FS (see Fig.5). At 
the same time, each proxy 
launches a pool of threads 
having the only task of 
allocating (2) the packets 
received by the proxy into 
files within the logical path 
associated to the Proxy, 
regardless from the device 
that sent the packet.

L. Catani, INFN-Roma Tor Vergata, Roma, Italy
F. Antonucci, C. Bisegni, A. Capozzi, G. Di Pirro, L.G. Foggetta, F. Iesu, N. Licheri, M. Mara, G. Mazzitelli, A. Stecchi 

INFN/LNF, Frascati (RM), Italy

UI Toolkit

DAQ

Control Library, Control Units and
Device Management Plug-ins

U
I t

oo
lk

it

distributed
KVDB

distributed
object caching

meta-data
server

Commands

client
applications

RPC
commands

API

meta-data
server API

History
data API

live data API

live data cache

low-level API

I N F NI N F N

We studied the possibility to introduce a circular buffer for sharing data among client 
applications. As an example, consider a GUI with a graph showing the last N values of a 
certain variable. When the GUI starts to fetch data from the KVDB, he User Interface 
Toolkit underneath allocates a lock-free circular buffer and provides the pointer to the 
buffer to the graph’s manager (see Fig.6). The buffer, with size equal to the depth of the 
graph, is updated by the tracker taking into account the refresh rate of the device and 
the sampling of the graph.

If another GUI panel or application needs the same data or a part of it, 
e.g. the most recent value of the buffer or a downsampling of data, the 
User Interface Toolkit instead of opening another stream of data uses 
the buffered data to feed the second client. Instead, if the second client 
needs a longer buffer or higher sampling frequency the buffer is resized 
accordingly and the original 
”owner” of the data buffer 
will extract data from it.

Control Unit is the ”container” for a device’s front-end 
controls. Beside the standard methods: INIT, START, 
STOP and DEINIT, CU specialization is provided by the 
device’s dataset, the actions implemented for it (e.g. 
commands and control loop) and the drivers for I/O 
components (see Fig. on the left).

At startup (INIT) the CU receives from the Meta Data 
Server (MDS) the dataset of the accelerator’s device 
(equipment, diagnostic, sub-systems, etc.) assigned to 
that unit and the related actions. The default action, 
i.e. RUN, implements the accelerator’s device control 
loop; other actions implement the commands for 
modifying the working state of the device or for 
executing more complex procedures.

In !CHAOS, I/O modules drivers are managed by 
CU-like components called Driver Unit. Similarly to CU 
they are specialized for a particular I/O module, or 
more in general a I/O service, by means of the 
module’s Dataset including specifications such us the 
IP address and port for a network device or the 
Controller address and Node number for CAN units 
etc., and by specific management software.
Dataset also includes unique identifiers for each I/O 
channel of the module (e.g. each input channel of an 
ADC module).
At startup the Driver Unit initialize the I/O module and 
starts populating the embedded key/value shared 
memory with default values of its I/O channels. 

At START the Driver Unit begins looping on the module I/O operations, 
triggered by HD or SW timing signals and refreshes the values in the share 
memory.

The unique identifier, defined for each I/O channel of any I/O module, is 
the only link between the user of the data and the producer of the data. 
When a new accelerator’s device is added to the control system, the 
programmer searches the database for the I/O modules used by this 
device and associates to the I/O variables the unique identifier of the 
channel it uses.

!CHAOS keywords: scalability, abstraction, integration of services, distributed object caching, non-relational 

key/value database, binary serialization, object relational mapping, memcached, mongodb, msgpack, BSON....

Proxy - CQL

Indexer #1

Indexes DB

FS Svr #1

FS Svr #2

FS Svr #32

2

1

1

3

3

4

4

5

6

6

5

Proxy - CQL

Cache
layer

Storage
Manager

Proxy - CQL

Proxy - CQL

Proxy - CQL

C
U

 T
oo

lk
it

front-end controller

distributed
KVDB

distributed
object

caching

meta-data
server

Commands
Alerts

framework u

C
on

tro
l U

ni
t 1

C
m

d

Handlers

Handlers

Handlers

Ac
tio

ns
 fo

r D
ev

ic
e 

#1

start/stop/init...

Run

C
on

tro
l U

ni
t N

Handlers

Handlers

Handlers

Ac
tio

ns
 fo

r D
ev

ic
e 

#N

start/stop/init...

D
riv

er
 U

ni
t 1

Run

C
m

d
C

m
d

C
m

d

Ac
tio

ns
 fo

r
D

ev
ic

e 
#1

I/O
dr

iv
er

s

start/stop/init...

C
om

m
on

 T
oo

lk
it

C
U

 T
oo

lk
it

C
on

tro
l U

ni
t 1

Handlers

Handlers

Handlers

Ac
tio

ns
 fo

r D
ev

ic
e 

#N

start/stop/init...

D
riv

er
 U

ni
t 1

Run

C
m

d
C

m
d

Ac
tio

ns
 fo

r
D

ev
ic

e 
#1

I/O
dr

iv
er

s

start/stop/init...

em
be

dd
ed

 k
ey

/v
al

ue
 s

ha
re

d 
m

em
.

Indexer #1

Fuser

Indexes
DB

distributed
File

System

21
3 4 5 6

Proxy - CQL Storage Manager

Proxy CQL
logical file logical files

chunk (physical file)

dataset dataset dataset dataset dataset

garbage
collector

tracker

get()


