EVOLUTION OF CONTROL SYSTEM STANDARDS ON THE DIAMOND SYNCHROTRON LIGHT SOURCE

M. T. Heron, T. Cobb, R. Mercado, N. Rees, I. Uzun, K. Wilkinson,

Diamond Light Source, Oxfordshire, UK

DIAMOND LIGHT SOURCE

- > Diamond Light Source is a third generation 3GeV synchrotron light source based on a 24-cell double bend achromatic lattice of 561m circumference. The photon output is optimised for high brightness from undulators and high flux from multi-pole wigglers.
 - > Accelerators and the first seven photon beamline were constructed between 2002 to 2007.
 - Second phase of fifteen photon beamlines from 2006 to 2012.
 - Third phase of ten photon beamlines were approved in \geq 2011 to 2017.

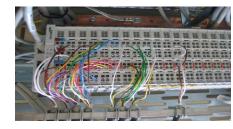
ORIGINAL CONTROL SYSTEM

- > Uses the EPICS toolkit and provides a high degree of integration.
- > Most equipment is interfaced through a range of generic VME IO based on VME IP carriers, IP modules.
- > Motion control, initially used OMS VME58 for straightforward applications on the accelerators; whereas for the photon beamlines for synchronous control, the Delta Tau PMAC controller is largely used.
- > Programmable Logic Controllers (PLCs) from Omron are used for interlocking and from Siemens for process control.
- > Client side tool use the standard EPICS tools for display panels (EDM), archiving (Channel Archiver), alarm management (ALH) and restoring system state (BURT and Save\Restore).
- > Diamond has standardized on a combination of EPICS and GDA for the control of photon beamlines, experimental stations and detectors.

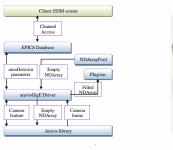
EVOLUTION OF CORE SOFTWARE COMPONENTS

- > Policy is to try and keep all systems on a common version of EPICS base, core components and modules.
 - Initial machine control system EPICS 3.13.9 with 3.14 for the Libera BPMs and soft IOCs.
 - > Beamline control systems which started in development in 2005 adopted EPICS version 3.14.8.2. > During 2008 to 2011, the machine control system was
 - upgraded to 3.14.8.2.
 - > As of 2013 majority of control systems are now at EPICS version 3.14.11 with an upgrade underway to 3.14.12.2.
- > All applications are built on a build-and-deploymentserver, thereby ensuring consistency of the tool chain for the build of all operational systems

EVOLUTION OF OPERATING SYSTEM

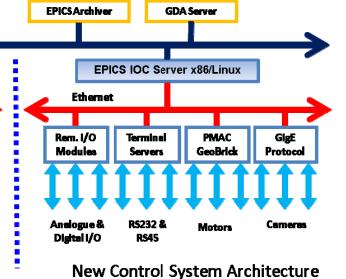

- > Standardized on Linux for development.
- > 2003 Red Hat version 9, for development.
 - > 2004 Red Hat Enterprise Linux 3 development and

Display Manager Alerm Hendler Ethernet **EPICS IOC Server VME/VxWorks** VME Bus Ethernet Rem. 1/0 PMAC Firewire Hytec IP Hytec IP modules PMC Modules modules VME Analogue & Analogue & RS232 & Motors Cameras Digital I/O Digital I/O RS45 **Original Control System Architecture**


ADCs DACs and DIO

- > ADCs, DACs and digital I/O connect directly to the IOC using, a range of Ethercat I/O modules from Beckhoff Automation.
- > Use EtherCAT, an industrial Ethernet-based fieldbus system.
- > This I/O will be used for all non-interlocking type applications, and provides lower latency from the plant to the IOC.

Video Cameras


- > Use GigE cameras from AVT (formerly Prosilica).
- > Use areaDetector to control, process and store images.
- > AreaDetector is a modular system of EPICS drivers and plug-ins that can be "rewired" at run time, allowing a flexible image processing chain to be set up.
- > Plug-ins for controlling the camera, providing statistics on the images that are produced, filtering them and writing them to disk.
- > FfmpegServer is a plug-in that compresses a stream of images to mjpg and serves them over http.

Motion Control

- ≻ Motion control, uses a standard solution based on the Delta Tau Geobrick LV Ethernet-based motor.
- Provides 8 axes of motion control and comes complete with amplifiers in a 4U rack-mount box. .

Serial Devices

- Vacuum instrumentation (Gauges and Pump Controllers) and other serial devices are interfaced through RS232, RS422 or RS485 serial connections to Moxa terminal Server.
- > Terminal server connect via Ethernet to the IOC

BEYOND THE STANDARD SOLUTION

- > Some functionality for example Scalers and Time Frame generator are still only available as a VME solution.
- > For some commercial detectors for examples the PCO Edge camera, for which there are only Windows drivers; then the IOC for control is realised on Windows.
- > Where the acquisition rate or latency requirements exceed what is realisable with the standard solution and in particular what is possible in software, then a solution has been realised in a FPGA. These have use a various Xilinx parts with a UDP stack implement in VHDL to communicate with a soft IOC.
- > Xilinx Zynq system-on-chip is such that it is now practical that Linux and EPICS can run directly on the FPGA.

CONCLUSIONS

- > VME was an excellent basis for the Diamond control system
 - Longevity of product and standard.
 - > Open standard with multi-vendor support.
 - Good hardware interoperability.

- initial operations.
- 2005 Red Hat Enterprise Linux 4 development and operations
- > 2008 Red Hat Enterprise Linux 5 development and operations.
- 2011 Red Hat Enterprise Linux 6 at 64 bit for development and operations.
- Coincident with operating system uplift a new version of EPICS Base, Extensions and external modules are taken; along with other dependent software components.
- > IOCs predominantly run under Linux or VxWorks, there are inevitably a few Windows systems, where only Windows drivers are available for a given piece of hardware.

EVOLUTION OF HARDWARE

- The new control systems standard is based on running EPICS IOCs on 1U x86 PCs running Linux with real-time extensions.
- IOCs are located within equipment they control as so are not regarded as a "soft IOCs".
- All instrumentation is then connected to the IOC by local network connections.

For more information please contact mark.heron@diamond.ac.uk

Programmable Logic Controllers

- > Interlocking and protection of equipment is realised in Omron CJ1 PLCs.
- > PLCs are interfaced to the IOC using Ethernet and the FINS protocol.
- > PLCs optionally use remote I/O modules called SmartSlice which will be located in the beamline optics and experiment hutches.

- Key aspect to building a distributed control system and subsequently maintaining it.
- > Control systems interface requirements have largely moved on with increased availability of "intelligent instruments" with communication based interfaces.
- Performance (response time and resolution) of PLCs has also evolved considerable in the past decade and costs have fallen.
- Commercial hardware and more mainstream operating systems provides great with benefits in functionality and cost.
 - Loss of physical interoperability.
 - Loss of cross vendors operability in the case of PLC solution.
 - > Reduced life expectancy of hardware.
 - > Loss of mechanical standards.
 - > Loss of the inability to accurately timestamp an acquisition or transition of a signal.

