
CONTINUOUS INTEGRATION USING LABVIEW, SVN AND HUDSON
O. O. Andreassen, A. Tarasenko, CERN, Geneva, Switzerland

ABSTRACT
In the accelerator domain there is a need of integrating and creating control applications in an easy and yet structured way. The LabVIEW-RADE framework provides the essential integration of
these applications into the CERN controls infrastructure. Building and distributing these core libraries for multiple platforms, e.g. Windows, Linux and OS X, and for different versions of
LabVIEW, is a time consuming task that consist of repetitive and cumbersome work. All libraries have to be tested, commissioned and validated. Preparing one package for each variation takes
almost a week to complete. With the introduction of Subversion version control (SVN) and Hudson extensive continuous integration server (HCI) the process is now fully automated and a new
distribution for all platforms is available within the hour. 	

 	

DEVELOPMENT METHODS	

	

Through agile methods, tasks and projects are split into smaller
increments that require minimal planning. Every iteration involves a
small cross-functional team working on all disciplines: planning,
requirement analysis, design, coding, unit testing and acceptance
testing. At the end of the iteration, the product or result is demonstrated
to the stakeholders, minimizing risks and giving room for fast changes
and adaptations.	

CONTINUOUS INTEGRATION PRINCIPLES	

 	

CI is a software engineering practice where small or isolated changes are immediately
tested and reported on when they are added to a larger code base. Therefore if a defect
is introduced in the code base, it can be identified and corrected without delay. In
addition CI software tools can be used to automate testing and to automatically
generate documentation. When used properly, continuous integration provides constant
feedback on the status of the software and its defects are detected early on in
development. In addition and as side benefit the defects are typically smaller, less
complex and easier to solve.	

TOOLS SELECTION	

 	

The CI engine has to:	

•  Be compatible with the existing SVN repository 	

•  Be able to execute any programming language or script 	

•  Run on all our main operating systems (Linux, Windows and OS X), 	

•  Report any issue(s) encountered automatically. 	

•  Be easy to maintain	

•  Have a plugin based and flexible pool of tools available	

CONCLUSION
The continuous integration and automation of the RADE framework has greatly improved the delivery time (from 1 week to 1 hour), quality and frequency of new software. It has made the framework more
robust through preventive testing and fault elimination before distribution. Automating these tasks add some maintenance overhead for the build environment itself, nevertheless the advantages and overall
time saved makes it worth the effort.

BUILD ENGINE	

 	

The RADE LabVIEW package has to be
compiled for 5 different platforms, 32 and
64 bit operative systems and consist of
many different build types. All the builds are
orchestrated trough a main instance of
Hudson, and built on 5 slave nodes. 	

GRAPHICAL BUILD ON A
HEADLESS MACHINE	

 	

One of the main challenges with the RADE
CI engine was building a graphical tool in a
non graphical environment. TigerVNC
provided a good solution for this	

