
EXPLORING NO-SQL ALTERNATIVES FOR ALMA MONITORING
SYSTEM

T. Shen, R. Soto, P. Merino, L. Peña, A. Barrientos, M. Bartsch, A. Aguirre, Jorge Ibsen. ALMA,
Alonso de Cordova 3107, Vitacura, Santiago, Chile

Abstract
The Atacama Large Millimeter /submillimeter Array

(ALMA) will be a unique research instrument composed
of at least 66 reconfigurable high-precision antennas,
located at the Chajnantor plain in the Chilean Andes at an
elevation of 5000 m. This paper describes the experience
gained after several years working with the monitoring
system, which has a strong requirement of collecting and
storing up to 150K variables with a maximum sampling
rate of 20.8 kHz. The original design was built on top of a
cluster of relational database server and network attached
storage with fibre channel interface. As the number of
monitoring points increases with the number of antennas
included in the array, the current monitoring system
demonstrated to be able to handle the increased data rate
in the collection and storage area (only one month of
data), but the data query interface showed serious
performance degradation. A solution based on no-SQL
platform was explored as an alternative to the current
long-term storage system. mongoDB has been selected.
Intermediate cache servers based on Redis were
introduced to allow faster streaming of the most recently
acquired data to web based charts applications for online
data analysis.

INTRODUCTION
The ALMA Monitoring System plays a fundamental

role on recording status of all hardware devices of the
observatory. This information is crucial to allow engineers
to take the correct decision and to schedule efficiently a)
preventive maintenance activities and in case of hardware
malfunction, the system also generates alarms in order to
trigger b) corrective actions by array operators or
engineers.

Besides of scientific data, monitoring system makes the
most intensive use of the database in term of number of
transactions and data storage. Currently, around 25GB of
monitoring data is collected per day from a total of
140.000 monitor points. In average, 5000 Clobs [1] is
collected per second. 80% of monitor points belong to
hardware located in antennas. There are 4 types of
antennas in ALMA, and in average there are 2,363
variables per antenna. The rest of 20% comes from
equipment in the central building.

The definition of the monitor points of each piece of
hardware is based on the container/component
architecture of ALMA Common Software (ACS) [2]. I.e,
there is one container per antenna, and each piece of
hardware within an antenna is modelled as a component
[3] (there are in average 45 device components per
antenna), which can have arbitrary number of BACI

properties [4], and finally, from each BACI property there
can be one or several monitor points. By definition, a
monitor point is a scalar with a timestamp associated to it.
The sampling information is defined at the BACI property
level and they are part of the Telescope Monitoring &
Control Database (TMCDB).

Figure 1: Monitoring system design using the relational
database.

As shown in the Fig. 1, during the system start up,
BACI properties are registered with a local component
within the antenna container called “Monitor Collector”.
This component caches temporary the sampled data,
which is cleared when the data is polled by an external
component called “Blobbers” in regular intervals. Each
Blobber component can deal with up to 8 Collectors and
in the original design they have to disaggregate the
collected BACI property data into monitor points by
reading the definition from the TMCDB and at the same
time insert the monitor points back to the same database.
In order to reduce the number of insertion in the database,
the data of the same monitor point are grouped in one
Character Large Object (CLOB).

During the early usage of monitoring infrastructure
(2009/2010), two fundamental problems were detected: a)
Some times, Blobbers could not keep up with the
incoming data rate, b) data querying to the database was
very slow. During the analysis of these problems, we
learnt several lessons: a) it’s better to simplify the online
section of the monitoring system and delegate as much as
possible the data processing in the offline phase, b) the
current database schema is highly optimized/normalized
for data insertion, c) more buffering mechanisms have to
be introduced in critical points of the whole pipeline in
order to deal with sudden peak of data rate, and in the
worse case drop the data to avoid crashing the associated
components and finally d) better instrumentation has to be
introduced in order to fine tune parameters of components
in the whole chain.

The data insertion problem was caused by a mismatch
in the versions of ODBC libraries, which caused the
observed degradation in the data insertion performance.

WECOBA06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1012C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

But the troubleshooting experience open new possibilities
to improve the monitoring system, especially in the
offline section of the pipeline: after Blobbers receives the
sampling data.

In order to improve the performance of the data query,
we decided to experiment with different approaches. The
fundamental problem was located in the database schema,
which is high normalized and data are extremely
atomized; therefore in order to construct a day-worth of
data for a single monitor point, non-trivial queries must
be submit to the engine. One solution is to use no
structured way to save the monitor data.

REFACTORING OF THE MONITORING
SYSTEM

The following goals were defined in order to improve
the performance and usability of the monitoring system:
a) provide a mechanism to access most recent acquired
data, b) provide preformatted text files for each monitor
point with a day-worth data, c) allow efficient historical
data access and finally d) minimize access to the online
control system, specially if the purpose is just to monitor
the system and not to control the system. And it was
mandatory to keep running the current implementation
until the new approach is ready.

In the following section, we will present the solution to
achieve these goals.

Implementation
The first thing we introduced is a queuing mechanism

in order to multiplex the data flow, and allow processing
of the monitor data in parallel by the current and the new
implementations. The Apache ActiveMQ [5] was
introduced into the dataflow just after the Blobber
components, as shown in Fig. 2, and publisher/subscriber
mode was chosen in order to feed both implementations.

Figure 2: Apache ActiveMQ added into the dataflow.

ActiveMQ has the advantage, among others, to have a
very good instrumentation based on MBean [6], which
can be access through JMX [6] protocol. These are
valuable information in order to understand the
characteristic of the data flow and to fine-tune each
involved component.

As mentioned before, in order to optimize the
performance in the Blobbers, we simplified the
implementation and excluded the logic to resolve BACI
properties into monitor points and moved it after the
ActiveMQ queue, the offline section of the data flow. A
buffering mechanism is added as well in order to protect
Blobber components against rush of data; basically, if the

buffer is full, then new data will be dropped to protect the
integrity of related components.

The original data insertion was implemented within the
TMCOracleArchiver, while in parallel the
TMCTextArchiver implementation is in charge to
generate the preformatted text files of each monitor point
with a day-worth of data. A web server hosts these text
files, therefore, engineers can download them directly
instead of querying the database in on-demand basis. New
coming data are appended to the text files and there are
few minutes of delay between the data is acquired from
the hardware until it is actually persisted in a text files.

The proposed data flow allows monitor data (messages)
passing from the Blobbers through the ActiveMQ to
several clients. Slow clients will be properly handled in
order to avoid any impact on the on-line software.
ActiveMQ has proved to be reliable and be able to keep
up with the required data rates. The current throughput is
in average between 4,500 and 5,000 Clobs per second.
Each Clob has 308 bytes in average. Peaks of 30,000 have
been generated in order to stress the implementation,
which was properly handled with the current available
hardware (see Table 1).

Table 1: Hardware of the Monitoring System Server

Monitoring System Server

O.S. Redhad Enterprise 6.3, 64 bit

CPU Intel(R) Xeon(R) CPU E5-2630 0
@ 2.30GHz, 12 cores

Memory 64 GB

Storage 30 TB in Raid5

In order to fulfil the online plotting requirement, an

additional process, the TMCDistributor, was added to
consume the data after the ActiveMQ queue and publish it
to a Redis [7] server, as shown in Fig. 3.

Figure 3: Redis and mongoDB added into the dataflow.

Only the last 20 samples are kept in memory by Redis
for each monitor points. Within Redis, another layer of
publisher/subscriber (channels) mechanism is used. Any
subscriber can reads data and feed it to the plot
dynamically. A web-based dashboards was implemented,

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOBA06

Data Management and Processing

ISBN 978-3-95450-139-7

1013 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

engineers can access to them through a HTML5
compatible browsers. The dashboards were implemented
with Webscokets and HighCharts [8] libraries.

The channels and the messages of each monitor point
have a common custom structure:

publish application_name:device:monitor_point_name “Message”
Where the “device” parameter has the following

format:
subsystem_name/antenna_name/device_name

And the “message” has the following format:
start_timestamp;end_timestamp;average_timestamp;CLOB;average
 An example of a subscription to a channel of monitor

points is showed in the Fig. 4.

Figure 4: Example of channel structure in Redis.

Finally, for the persistent storage of historical data, we
explored several no-SQL alternatives, such as: mongoDB
[9], Cassandra, Hbase, etc. At the end the mongoDB
presented the best trade-off between features and the
required administration effort.

In mongoDB, three types of documents (schemas) was
modelled for the monitoring data:

a) One monitoring point per document: The
document is associated to one monitor point and it will
contain only one single monitor point value. An example
is shown in the Fig. 5.

Figure 5: Example of one monitoring point per document.

b) A Clob per document: The document is associated
to one Clob of monitor point, as presented in Fig. 6.

Figure 6: Example of a “clob per document” schema.

c) A monitor point per day per document: The
document is associated to a monitor point and it contains
values of one day. Fig. 7 shows an example of a
document using this kind of schema.

Figure 7: A monitor point per day per document schema.

Several tests were done to determine if the proposed
designs were able to meet the required performance. The
results showed that the scheme of “a monitor point per
day per document” provided the best balance between
amount of documents within single a collection (the
equivalent of table in relational database) and the
granularity of the data of a single monitor point (in real
life, no body is interested in just a single monitor point
but in a range of monitor points)

In the case of one day-worth data of a monitor point,
this schema actually managed to retrieve the required data
within couples of milliseconds.

Another advantage to save the monitor data in
mongoDB is the simplicity of the queries. For example, to
retrieve single data of a monitor point named
“FrontEnd/Cryostat/GATE_VALVE_STATE”, with
seconds-level of granularity can be achieve by using the
following excerpt (in the case we queried for the data at
2012-09- 15T15:29:18).

db.monitorData_[MONTH].findOne(
{"metadata.date": "2012-9-15",
 "metadata.monitorPoint":
"GATE_VALVE_STATE",
 "metadata.antenna": "DV10",
 "metadata.component": "FrontEnd/Cryostat”},
 { 'hourly.15.29.18': 1 }
);

WECOBA06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1014C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

To retrieve a range of values of the same monitor point
at 2012-09-15T15:29 (all samples acquired during the the
minute 29), we can use the following example:

db.monitorData_[MONTH].findOne(
{"metadata.date": "2012-9-15",
 "metadata.monitorPoint":
"GATE_VALVE_STATE",
 "metadata.antenna": "DV10",
 "metadata.component": "FrontEnd/Cryostat”},
 { 'hourly.15.29': 1 }
);

CONCLUSION
We presented the current implementation of the monitor

system of ALMA, a system capable to handle up to 150k
monitor points. We described the lessons learnt during the
early stage of the deployment. Improvements introduced
in critical sections of the data flow were shown, as well as
the alternative way to deal with monitor data instead of
the de-facto structured database implementations.

No-SQL database proved to be a valid solution for a
monitoring system, in which, no-SQL is a perfect
paradigm for storing big and heterogeneous amount of
data. In our experience, mongoDB, a document-oriented
solution, has demonstrated to be a good alternative for
permanent data storage. The chosen schema, “A monitor
point per day per document”, fulfilled most of the use
cases in the operation with regards to the monitoring data,
especially, it allows queries to be returned in range of
milliseconds.

Redis is an appropriate key-value solution for caching
short period of monitoring data. Redis channels are well
designed for publishers/subscribers of events in pseudo
real time environment.

Finally, we believe that we can also achieve the same
results by de-normalized the schema of TMCDB and a
better definition of indexes in the relational database. But
we believe that it is better and more nature to use no-SQL
database to deal with no structured data instead of the
very complex entity-relational scheme. At the end, why
do you bother to structure the data while it will be used
only in no structured way at the end of the day?

REFERENCES
[1] Shen, T., Ibsen, J., Soto, R., Other. “Status of

ALMA software”, ICALEPCS, MOPMU024.
(2011).

[2] Schwarz, J., Farris, A., Sommer, H., “The ALMA
Software Architecture”, Proceedings of SPIE, 5496,
p. 190 (2004).

[3] Farris, A. and Juerges, T., Device Driver Code
Generation Framework. ALMA (2007).

[4] Chiozzi, G. and Sekoranja, M., ALMA Common
Software Overview (2006).

[5] ActiveMQ website
 http://activemq.apache.org
[6] Java Management Extensions (JMX) website
 http://www.oracle.com/technetwork/java/javase/tech

/javamanagement-140525.html
[7] Redis website
 http://redis.io
[8] Highcharts website
 http://www.highcharts.com
[9] mongoDB website
 http://www.mongodb.org

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOBA06

Data Management and Processing

ISBN 978-3-95450-139-7

1015 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

