
DISTRIBUTED INFORMATION SERVICES FOR CONTROL SYSTEMS
L. Dalesio, D. Dohan, G. Shen, K. Shroff, R. Buono, BNL, USA*

M. Vitorovic, Cosylab, Slovenia
K. Zagar, COBIK, Slovenia

S. Gysin, L. Fernandez, K. Rathsman, G. Trahern, ESS, Sweden
F. Guo, H. Lv, C. Wang, Z. Zhao, IHEP, China**

E. Berryman, P. Chu, D. Liu, S. Peng, V. Vuppala, NSCL-FRIB, USA***

Abstract
During the design and construction of an experimental

physics facility (EPF), a heterogeneous set of engineering
disciplines, methods, and tools is used, making
subsequent exploitation of data difficult. In this paper, we
describe a framework (DISCS) for building high-level
applications for commissioning, operation, and
maintenance of an EPF that provides programmatic as
well as graphical interfaces to its data and services.
DISCS is a collaborative effort of BNL, FRIB, Cosylab,
IHEP, and ESS. It is comprised of a set of cooperating
services and applications, and manages data such as
machine configuration, lattice, measurements, alignment,
cables, machine state, inventory, operations, calibration,
and design parameters. The services/applications include
Channel Finder, Logbook, Traveler, Unit Conversion,
Online Model, and Save-Restore. Each component of the
system has a database, an Application Programming
Interface (API), and a set of applications. The services are
accessed through REST and EPICS V4. We also discuss
the challenges to developing software in an environment
where requirements continue to evolve and developers are
distributed among different laboratories with different
technology platforms.

INTRODUCTION
There is need for an integrated information system that

manages the data and computation used by an
experimental physics facility (EPF) during its design,
construction, commissioning, and operation. Such a
system can be used to manage design lattices, model
them, run what-if scenarios, tune the beams, troubleshoot,
manage calibration data, maintenance records, alignment
information and quality metrics, and generate reports for
funding or regulatory agencies.

Distributed Information Systems for Control Systems
(DISCS) [1], [2] is a framework for integrating,
managing, and accessing this information base, and other
necessary computation. Its scope covers these data:

 Machine Configuration: Components and their
configuration; design, measurement, alignment,

maintenance, inventory, and calibration data.
 Lattice: Elements and their settings.
 Logbooks: Electronic logbook entries.
 Traveler Information: Device fabrication, test, and

measurement data.
 Save/Restore: Save and restore state of the machine

and its segments.
 Online Model: Simulation of the machine. Inputs and

outputs of the simulations.
 Physics: Data related to physics applications.
 Cables: Information related to cables, trays, routing,

etc. to help with pulling and maintenance of cables.
 Security: User authentication, authorization, device

and data access control.
 Control Signals: Control System (EPICS) related

information such as process variables and
input/output controllers.

 Alarm: Supervision of alarm states in the EPF,
assistance to operators for diagnostics and resolution
of alarm conditions.

 Operations: Beam statistics, run hours, beam on
target, shift summary, downtime, bypass records.

Vision
 DISCS’ vision is to develop collaborating database-

driven services that any experimental physics facility can
easily configure, use, and extend for its design,
commissioning, operation, and maintenance. In the
process, a set of APIs will be defined that will form the
framework of such an integrated system.

Collaboration
Due to the large scope of this endeavour and limited

resources, it was felt that this effort can be realized only
through collaboration among various labs. However,
collaboration among labs brings unique challenges to the
project. Each lab has conflicting and evolving
requirements. They have differing schedules,
technologies, and development methodologies.

ARCHITECTURE
The basic architecture for DISCS is shown in Figure 1.

It consists of three layers: Data, Service, and Application.
Data Layer represents all the data sources: managed,
unmanaged, structured, and unstructured. Service Layer is
composed of services. A service is a reusable software

* This work is done by Brookhaven Science Associates, LLC under
Contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
** This work is supported by the CSNS Project.
*** This work was supported in part by the U.S. Department of Energy
Office of Science under Cooperative Agreement DE-SC0000661, the
State of Michigan and Michigan State University.

WECOBA02 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1000C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

component that implements a set of business functions,
has a formal and documented interface, and can be
located and accessed through standards-based
communication mechanisms. In our case, a service can
be thought of as a software process that implements
controls or physics related logic, and provides high-level
data structures to the user through REST [3] and
PVaccess [4] protocols. Application Layer consists of the
software tools or components that present the information
to the user. Application Layer accesses the databases
through Service Layer.

Figure 1: Applications, services, and data.

EPICS V4
DISCS is part of the EPICS V4 ecosystem [4]. It

focuses on middle-layer services and end-user
applications primarily driven by databases of structured or
unstructured data. This is illustrated in Figure 2.
Applications access the DISCS services (middle layer)
through Channel Access, PVaccess, or RESTful
protocols. Note that many DISCS services may be used
with control systems other than EPICS.

Figure 2: EPICS V4 and DISCS.

DEVELOPMENT METHODOLOGY
DISCS is an ambitious undertaking. It is being

developed by multiple teams from different labs at

dispersed locations. Each lab has its own priorities,
requirements, schedules, constraints, and processes. The
traditional approaches of database design, software
development and project management do not work well in
such environment. It demands varying degrees of
redundancy, agility, and uncertainty in its development.

Development in such collaborative environment is a
challenge. Traditional database application development
methodology, where schema is developed first and
managed centrally, was initially tried. It was abandoned
due to slow pace of development. Pros and cons of the
development techniques that were considered are
described in [2]. It was decided to develop DISCS in a
decentralized approach as described below.

The entire development process is broken into phases:
 Phase I: The entire system is broken down into

smaller loosely-coupled parts or domains. Two
domains are loosely coupled if they do not share a lot
of data. The division is also based on functionality,
domain expertise, and ease of development.

 Phase II: In this phase each domain is implemented
independently. A module is an implementation of a
domain. There can be several implementations
(modules) for a domain. Each module is developed
by a team which is responsible for the entire
development: requirements, analysis, design,
database schema, services, API, and applications.
The goal of this phase is to understand requirements,
refine the database schema, and release usable
applications. Agile techniques are recommended
during this phase, however, each team is free to
follow any methodology.

 Phase III: Form the API for each domain. Even
though formation of APIs gets initiated during Phase
II, the priority is to get the applications to the users.
During Phase III APIs are made complete, including
standardizing of data-structures for data exchange.

 Phase IV: Integrate the domains. This involves:
o Enhance functionality by accessing data from other

modules
o Manage data redundancy among modules
o Evaluate performance bottlenecks
o Develop domain-level APIs from module APIs. If

there are multiple modules for a domain, then
come up with a comprehensive standard API for
the domain.

Integration may occur at various levels. It is
encouraged to integrate through APIs at service level.
However, due to performance reasons, it may be
necessary to have certain integration at database level.
See Challenges section for details.

MODULES
A module is an implementation of a domain. It consists

of a database, one or more services, an API, and zero or
more applications to manage the data/service. Modules
interact with one-another through their service or database
interfaces.

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOBA02

Data Management and Processing

ISBN 978-3-95450-139-7

1001 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

A module is defined as a composition of:
 A database
 Zero or more module applications. The applications

of a module are for managing the data or services of
the module. They are generally written by the
Module Team. They are distinct from the
applications written by users.

 The Module API. It is a specification for the
module’s functionality and data. It is a contract
between the Module Team and module’s users. A
module’s API is not restricted to V4 or REST
interface only; it may have database interfaces: join
columns or primary keys.

The structure of components (database, API, services,
and module applications) within a module is left to the
discretion of the Module Team. A simple approach is to
have the services and module applications access the
database directly. Module Team manages the changes to
schema and its effects (on applications and services).
Another approach is to have a layer (stored procedures or
data library) over database; services and applications
access the data only through this layer. The third
approach is to have applications access the data only
through the services. Note that these options are for the
structuring of the components within a module. User
applications must access a module’s data only through its
service API.

The entire system is made up of a collection of
collaborating modules as shown in Figure 3. User
applications access module services using the module’s
service APIs through REST or V4 services. However,
modules may access other modules using the database
interfaces as well. Some of the DISCS modules are
described in [[5]-[8]].

Figure 3: Collaborating modules.

CHALLENGES
Many modules have limited common data among them.

They integrate with one another easily. They just need the
APIs to access data from one another. However, for some
modules that are somewhat tightly coupled (high data
dependency), such as Configuration and Lattice or Cable
modules, integration can become problematic. Some of
the issues in such cases are:

 Performance: Accessing data through API is slow
especially if queries need joins across modules. This
can be mitigated in several ways:
o The service can access tables of another module

directly. The two teams must agree upon the

interface (table name, column names and types)
and make it part of the module’s API.

o One module may cache (read-only) another
module’s data, and manage the coherency through
a service or federated tables.

o If the data cohesion between the modules is very
high, then it is better to combine the modules into
one.

 Data Integrity: A module may need to maintain
referential integrity through data in other module i.e.
foreign keys to tables in another module. This can be
achieved through including the referenced primary
key in that module’s API (table name, column names
and types). Another way is to have an application
check for integrity periodically. Triggers may also be
used but are discouraged as they are DBMS specific.

 Data Redundancy: Two modules may have the same
data. This redundancy may be eliminated from one
module and replaced with joins and/or foreign keys
as mentioned above. In some cases the data in one
module can be treated as cache and kept coherent
through a service or a federated table.

As discussed above, a module’s API is not restricted to
V4 or REST interface only; it may have database
interfaces: join columns or primary keys corresponding to
certain foreign keys. Since surrogate key for an entity
may change over time, natural keys must be used for any
database interfaces (unless surrogate keys are guaranteed
to remain unchanged).

Another challenge is of data migration. When a schema
changes, due to a new version of the module or due to
integration, it is sometimes difficult to automate
migration of old data to the new schema. This depends on
the type of schema changes.

Different teams may use different technologies for
development based on a lab’s policies and expertise. This
can cause huge problems in deployment, maintenance,
and customization of the module at another lab. To limit
this problem, the collaboration recommends a set of
technologies for development. For example, MySQL is
the recommended DBMS, V4 and REST the
recommended service layer protocols, and Java and
Python the recommended languages.

It is important for teams to understand one another’s
schema. However, different teams may use different
conventions for naming their database objects. Hence, the
collaboration recommends a schema naming convention
[2].

Project Management
DISCS Collaboration has no control over the software

lifecycle development and project management
methodologies of individual teams as these are mostly
dictated by the labs. Each lab uses different techniques
and tools. For example, FRIB uses a mix of agile and
traditional project management processes, and ESS uses
Scrum-based processes. Hence project management
activities are kept to a minimal. A lot of emphasis is put
on communication. Quarterly goals are set for each

WECOBA02 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1002C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

domain. The group meets every week using web
conferencing. The group meets in-person every quarter. It
also meets with the rest of EPICS V4 community during
the in-person meeting. As the modules mature, a more
rigorous system of requirements, schedule, and
performance monitoring is being planned.

CURRENT STATUS
Different DISCS modules are at different stages of
development as shown in Table 1. Multiple
implementations of Lattice-Model domain are being
developed at different labs. Module teams working on
coming up with domain-level APIs for each domain.

Table 1: Domain Status

Domain Status
Logbook In production at FRIB & BNL
Etraveler In production at FRIB
Configuration In production at FRIB.

Developed by FRIB, ESS,
and Cosylab

Cables Under development at FRIB
Lattice-Model Under development at FRIB,

BNL, and ESS
Operations Under development at FRIB
Naming
Convention

In production at FRIB.
Developed by FRIB, ESS,
and BNL

Unit Conversion Under development at BNL
Control Signals
(PV)

In production at BNL and
FRIB (ChannelFinder)

Inventory &
Maintenance

Under development at FRIB,
ESS, and Cosylab

Security Under development at ESS
Machine state
dumps for MPS

Not initiated

Interlock
hierarchy

Not initiated

Save/Restore In production at BNL

RELATED WORK
Several systems based on an integrated database have

been developed to manage the data associated with an
EPF [[9]-[13]]. Most of them are limited in their scope,
mostly to information related to Control System. Their
development effort is limited to one lab, and hence their
database and applications can be designed using the
traditional methods. Our scope and collaborative structure
bring unique challenges to the design and development of
the system. Our goals of developing generic modules and
APIs that anyone can use also make DISCS a unique
collaborative endeavour.

CONCLUSION
There is a need for an integrated information system

that provides access to all the data of an accelerator
facility. DISCS is an effort to implement such a system
using distributed and collaborating services. It is part of
the EPICS V4 ecosystem. DISCS is being developed
collaboratively by several organizations. This presents a
unique set of technical and developmental challenges. We
addressed these challenges using suitable architecture,
software development processes, conventions, and
database implementation techniques.

ACKNOWLEDGEMENTS
We would like to thank the Control System Studio [14],

EPICS V4, IRMIS, and PVManager [15] teams for their
suggestions and support.

The Centre of Excellence for Biosensors,
Instrumentation and Process Control is an operation
financed by the European Union, European Regional
Development Fund and Republic of Slovenia, Ministry of
Higher Education, Science and Technology.

REFERENCES
[1] DISCS, http://discs.openepics.org
[2] DISCS Handbook, http://discs.openepics.org/
[3] R. Fielding, “Architectural Styles and the Design of

Network-based Software Architectures,” Ph.D.
Dissertation, University of California, Irvine, 2000.

[4] EPICS V4, http://epics-pvdata.sourceforge.net/
[5] V. Vuppala et al., “Proteus: FRIB Configuration

Database,” TUPPC031, ICALEPCS 2013, San
Francisco, CA, to be published; www.JACoW.org

[6] Olog, http://olog.sourceforge.net/olog/
[7] P. Chu et al., “Accelerator Lattice and Model

Services,” MOPPC152, ICALEPCS 2013, San
Francisco, CA, to be published; www.JACoW.org

[8] G. Shen, “NSLS II Middlelayer Services”,
MOPPC152, ICALEPCS 2013, San Francisco, CA,
to be published; www.JACoW.org

[9] IRMIS: Integrated Relational Model of Installed
Systems, http://irmis.sourceforge.net

[10] J. Bobnar and K. Žagar, “BLED: A Top-Down
Approach to Accelerator Control System Design”,
TUAAULT03, ICALEPCS 2011, Grenoble, France,
pp. 537-539; www.JACoW.org

[11] Z. Zaharieva et al., “Database foundation for the
configuration management of the CERN accelerator
controls systems,” MOMAU004, ICALEPCS 2011,
Grenoble, France, pp. 48-51; www.JACoW.org

[12] T. Larrieu et al., “Design and implementation of the
CEBAF element database,” MOPKN029,
ICALEPCS 2011, Grenoble, France, 2011, pp. 157-
159; www.JACoW.org

[13] D. Beltran et al., “ALBA control & cabling
database,” MOPMN003, ICALEPCS 2009, Kobe,
Japan, 2009, pp. 423-425; www.JACoW.org

[14] CS Studio, http://controlsystemstudio.github.io/
[15] PVManager, http://pvmanager.sourceforge.net

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOBA02

Data Management and Processing

ISBN 978-3-95450-139-7

1003 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

