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Abstract 
The four LHC experiments (ALICE, ATLAS, CMS and 

LHCb), either by need or by choice have defined different 
requirements, use different equipment, and are operated 
differently. This led to the development of four quite 
different Control Systems. 

Although a joint effort was done in the area of Detector 
Control Systems (DCS) allowing a common choice of 
components and tools and achieving the development of a 
common DCS Framework for the four experiments, 
nothing was done in common in the areas of Data 
Acquisition or Trigger Control (normally called Run 
Control). 

This paper will present an overview of the design 
principles, architectures and technologies chosen by the 
four experiments in order to perform the main tasks of the 
Control System: Configuration, Control, Monitoring, 
Error Recovery, User Interfacing, Automation, etc. 

INTRODUCTION 
In general the Control System of an LHC experiment 

handles the configuration, monitoring and operation of all 
experimental equipment involved in the different 
activities of the experiment: 

 The Data Acquisition System (DAQ): front-end 
electronics, readout network, storage etc. 

 The Timing System: timing and trigger distribution 
electronics 

 The Trigger: the hardware trigger components. 
 The High Level Trigger (HLT) Farm: thousands of 

trigger algorithms running on a CPU farm. 
 The DCS: sub-detector gases, high voltages, low 

voltages, temperatures, etc. and also experiment’s 
infrastructure: magnet(s), cooling, electricity 
distribution, detector safety, etc. 

 Interaction with the outside world: LHC Accelerator, 
CERN safety system, CERN technical services, etc. 

The relationship between the Control System and other 
components of the experiment is shown schematically in 
Fig. 1. This figure shows that the Control System 
provides a unique interface between the users and all 
experimental equipment. 

Some of the requirements that were common to the 
four experiments are: 

 Distribution and Parallelism - Due to the large 
number of devices and IO channels, the acquisition 
and monitoring of the data has to be done in parallel 
and distributed over many machines. 

 Hierarchical Control – The data gathered by the 
different machines has to be summarized in order to 
present a simplified but coherent view to the users 

 Partitioning – Due to the large number of different 
teams involved and the various operation modes of 

the system, the capability of operating parts of the 
system independently and concurrently is mandatory. 

 Automation – Standard operations and error recovery 
procedures should be, as much as possible, 
automated in order to prevent human mistakes and to 
speed up standard procedures. 

 Intuitive User Interfaces – Since the operators are not 
control system experts it is important that the user 
interfaces are intuitive and easy to use. 

 All other standard requirements in large Control 
Systems: Scalability, Reliability, Maintainability, etc. 

 

Figure 1. Scope of the Experiment Control System. 

LHC EXPERIMENTS’ COMMONALITIES 
The Joint Controls Project 

Around the end of 1997, a common project between the 
four LHC experiments and a CERN controls group (first 
IT/CO then EN/ICE) was setup. Its mandate was to: 
“Provide a common DCS for all 4 experiments in a 
resource effective manner” and in more detail to: 
“Define, select and/or implement as appropriate the 
architecture, framework and components required to 
build the control system”. 

This project – JCOP (Joint COntrols Project) [1] – was 
very successful and it is often cited as an example; it 
resulted in a common architecture and a common 
framework used by all 4 experiments and all their sub-
detectors and sub-systems (and also by other experiments 
and projects at CERN). 

JCOP is still active promoting commonality and 
proposing and implementing common developments and 
upgrades in the area of Detector Control Systems. 

Throughout the years, JCOP has spawned many 
important sub projects, for example: 

 The Architecture Working group 
 Technology Survey: evaluation, validation and 

selection of products for use by the Control System 
 The Framework Working Group 
 The Detector Safety System 
 And several others 
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The JCOP Framework 
The major outcome of the above working groups was 

the JCOP Framework (FW) [2]. It was defined as: 
“An integrated set of guidelines and software tools 

used by Detector Developers to realize their specific 
Control System application. The Framework will include, 
as far as possible all templates, standard elements and 
functions required to achieve a homogeneous Control 
System and to reduce the development effort as much as 
possible for the Developers”. 

At the end of a very detailed evaluation process a 
product was selected as the basis for the framework. This 
product is a SCADA (Supervisory Control and Data 
Acquisition) System - PVSS II (now called WinCC-OA) 
[3], from ETM (now part of Siemens). PVSS II has a 
highly distributed architecture allowing the Control 
System to run distributed over hundreds of PCs. It 
provides a common interface to access all necessary 
equipment and it provides several tools to ease the life of 
building a control system, some of them are: 

 Several drivers to access various types of devices 
(extendable to allow for user-devices) 

 A run-time database for storing the data coming from 
the various devices, easily accessible for processing, 
visualisation, etc. 

 Alarm Handling (generation, filtering, masking, 
visualization of alarms) 

 Data Archiving, Logging, Scripting, Trending, etc. 
 A very powerful User Interface Builder 
 Several predefined Interfaces: Parameterisation, 

Alarm Display, Access Control, etc. 
Within the Framework and in order to handle high level 

abstraction, PVSS II was complemented by another tool: 
SMI++ (State Management Interface) [4]. SMI++ is a 
toolkit for modelling the behaviour of large distributed 
control systems; its methodology combines three 
concepts:  object orientation, Finite State Machines 
(FSM) and rule-based reasoning. 

By combining these two products the framework offers 
tools to implement a hierarchical control system, in 
particular using a graphical user interface, shown in 
Fig. 2, which allows the configuration of object types, 
declaration of states, actions, rules, etc. as well as the 
definition and operation of the hierarchical control tree. 

The framework was then complemented by numerous 
components to completely handle the most common types 
of equipment (very often using the OPC - OLE for 
process Control protocol) [5]; another communication 
protocol –DIM (Distributed Information Management) 
[6], to access any non-standard devices; access to a 
Configuration Database; System Overview tools to 
monitor the state of the control system itself; etc. 

The JCOP framework was used to completely design 
and build the DCS of ALICE, ATLAS and CMS and in 
LHCb it was used across the whole experiment to 
implement the Experiment Control System and all its sub-
systems. It is also used by other experiments at CERN 
like COMPASS or NA62 and/or other Common projects 

like the LHC experiment’s Gas Systems, the Detector 
Safety Systems, etc. 

 
Figure 2: The Framework Device Editor Navigator. 

LHC EXPERIMENTS’ DIFFERENCES 
At the time of starting the Control System’s design it 

was considered that the DAQ and Trigger Control areas 
did not offer enough commonality to try to work together 
among the experiments. So each experiment set up a 
Control team to work in this area and in particular, to 
design and implement their Run Control (the highest level 
interface to the control of the experiment). Not 
surprisingly each experiment arrived at a completely 
different solution. In fact since the original requirements 
were quite similar, the architectural choices and even the 
list of components are actually very similar in the four 
experiments. What is quite different is the emphasis given 
to different design principles and above all the choice of 
tools, products or paradigms used to implement each one 
of the components.  

Design Principles 
Different experiments have followed different design 

principles and put emphasis on different requirements. In 
ATLAS the system was designed to be hierarchical and 
provide a high level of abstraction, in CMS the first 
design choice was to have a web-based system, while 
ALICE tried to design highly customisable and flexible 
components and LHCb put the highest emphasis on 
having an integrated and homogeneous control system.  

Architecture & Scope 
The high-level architectures of the four experiments’ 

control systems are very similar. All are divided into a 
DCS tree encompassing the various sub-detectors and 
sub-systems and a Run Control tree overseeing the 
electronics of the various sub-detectors and the central 
DAQ & Trigger systems. Fig. 3 shows as example the 
ATLAS architecture, CMS’s architecture is quite similar. 
In ALICE and LHCb there is an “Experiment Control 
System” (ECS) above all other central systems (DCS, 
DAQ, Trigger and HLT), either directly (ALICE) or 
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through a Run Control level (as shown in Fig. 4 for 
LHCb). 

 
Figure 3: ATLAS Control Architecture. 

 
Figure 4: LHCb Control Architecture. 

CONTROL SYSTEM COMPONENTS 
Several frameworks are in use in the LHC experiments: 

apart from the JCOP framework there are experiment 
specific frameworks in three out of four experiments (as 
in Fig. 3). These have different names and slightly 
different functionality in each experiment: 

 ALICE: uses DATE (Data Acquisition and Test 
Environment) [7]. 

 ATLAS: Provides a set of services for higher level 
control [8] and a DAQ framework: the Rod Crate 
DAQ Framework. 

 CMS: has two complementary frameworks: RCMS 
(Run Control and Monitoring System) and XDAQ 
(DAQ Software Framework)[9]. 

Even though these Frameworks provide quite different 
tools and components, some functions are present across 
all Frameworks as they are basic components of any 
Control System: 

 Communications: For acquiring data, sending 
commands and in general for exchanging messages 
between processes. 

 Finite State Machines: For the description of system 
components and for the synchronization and 
sequencing of operations 

 Expert System Functionality: For error recovery, 
operator assistance and/or system automation 

 Databases: For storing configuration data, for 
archiving historical data, etc. 

 User Interfaces: For Visualization and for System 
operation 

 Many other services like process management, 
resource management, etc. 

Communications 
All Frameworks provide communication mechanisms. 

Within communications we can distinguish three types of 
data flow: 

 “Control” data: These are normally short messages, 
bidirectional traffic mostly commands in one 
direction and status messages in the other direction. 

 “Configuration”: These messages can contain large 
amounts of data mostly in the direction control-
system to hardware (or software process). 

 “Monitoring”: These can also be large messages 
normally in the opposite direction .i.e. hardware (or 
software process) to Control System. Furthermore 
Monitoring data may need to be “archived” or made 
persistent either for short periods or even 
permanently, so that the system status can be 
analysed or trouble-shot in case of problems. 

The various experiments have different ways of 
handling these different types of data: 

 JCOP FW/LHCb: Within the JCOP Framework most 
control type data is handled by the SMI++ toolkit 
which uses the DIM Publish/Subscribe mechanism. 
The configuration data is handled by PVSS and it is 
sent to specific devices (hardware or software) using 
the appropriate drivers, in LHCb, for example, the 
largest amounts of Configuration and Monitoring 
data are in the DAQ area and are sent/received via 
DIM. 

 ALICE ECS also uses SMI++ (but outside the 
JCOP/PVSS framework) and hence DIM for control 
messages. DIM is also used directly for some 
Configuration and Monitoring but ALICE has the 
particularity that most sub-detector DAQ electronics 
are configured via the DCS hence via the JCOP FW 
(and in most cases via DIM). 

 ATLAS uses CORBA [10] for all Communications, 
within two packages: “IPC” (Inter Process 
Communications) for Control and Configuration and 
“IS” (Information Service) for Monitoring. In 
ATLAS some sub-detector electronics are also 
configured via the DCS (JCOP FW) 

 CMS uses Web Services [11]. These are used within 
the RCMS high level framework for Control, within 
the XDAQ framework for Configuration and within 
XMAS (the XDAQ Monitoring and Alarm System) 
for Monitoring. 

Within the DCSs and in LHCb, PVSS II (temporarily) 
and its archive mechanism in Oracle (permanently) is 
used as a repository for monitoring data. This is also the 
case of the ATLAS IS (although only transiently) and the 
CMS XMAS system. 

The three most used communication mechanisms in the 
DAQ area are DIM, CORBA in the ATLAS IPC and the 
CMS Web Services (XML/Soap), they all use the 
Client/Server model and mostly a Publish/Subscribe 
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mechanism. It is difficult to compare them in terms of 
performance, but DIM is a thin layer on top of TCP/IP, 
IPC is a thin layer on top of CORBA, both provide a 
simple API, a Naming Service and some error-detection 
and recovery. As advantages they are both quite efficient 
and easy to use. As drawbacks, DIM is home-made while 
CORBA is not so popular anymore. As for Web-Services 
they are a standard, modern, protocol but their 
performance can be a drawback due to the XML 
overhead. In the DCS area OPC DA (Data Access), is 
widely used. It is an industry standard but its main 
drawback is the link to Windows, this will be overcome in 
the new platform independent standard: OPC UA (Unified 
Architecture). 

Finite State Machines 
All experiments use Finite State Machines in order to 

model the system behaviour. The SMI++ toolkit is the 
most used since it is an inherent part of the JCOP FW and 
hence used in all DCS Systems, for the complete 
modelling of LHCb’s Experiment Control System and 
also used in ALICE as a stand-alone tool. ATLAS has had 
several iterations of their FSM toolkit, the first version 
used CHSM (Concurrent Hierarchical State Machines) 
which used its own statechart specification language, the 
second version used CLIPS [12] (a tool for building 
expert systems) while the current version is home-made 
in C++. CMS built two FSM toolkits, one in Java for 
RCMS and one in C++ for XDAQ. The approach of each 
experiment to how to design, implement or distribute the 
FSMs for the various sub-systems is also different: 

 In ALICE the FSM for all sub-systems was provided 
centrally but can be different from one sub-system to 
another. 

 In ATLAS the FSM for all sub-systems was provided 
centrally and they all have to be the same. 

 In CMS FSM templates were provided centrally, 
sub-systems implement specific Java or C++ code. 

 In LHCb FSM templates were provided centrally, 
sub-systems can modify the template using a graphic 
editor. 

In general most experiments decided on a few, coarse-
grained states to model their Run Control operations. 
Assuming that most sub-systems can work in parallel, 
generic actions can be sent down from the top and the 
top-level needs no or very little knowledge of the sub-
systems’ internals. 

 
Figure 5: LHCb Run Control FSM. 

Fig. 5 illustrates as an example the LHCb Top-level Run 
Control FSM. ATLAS and CMS FSMs are quite similar. 

In ALICE the top-level needs to synchronize more 
detailed operations across sub-systems so the top-level 
FSM needs more states, around 20 to 25, 15 states from 
“ground” state to “RUNNING”. 

Expert System Functionality 
All experiments saw the need for some form of expert 

system functionality. The approach is normally: “we are 
in the mess, how do we get out of it?” by opposition to 
“we are in the mess, how did we get there?” and none of 
the systems has the capability of “automatic learning”, in 
all cases all “rules” are coded by experts. Expert systems 
are used for advising the shifter (in ATLAS and CMS), 
automated error recovery (ATLAS, CMS, LHCb and 
more modestly in ALICE) and to completely automate 
standard operations (LHCb). The tools used are: 

 In ATLAS: CLIPS is used for error recovery. There 
are central and distributed (domain specific) rules. 
The system is used only by CLIPS experts, they can 
implement sub-system rules on request. A different 
tool is used for the “Shifter Assistant”. This is based 
on “Esper” [13], a component for Complex Event 
Processing. Esper allows dealing with large volumes 
of high-frequency time-based event data. ATLAS is 
now moving away from CLIPS and more towards 
the Esper approach. 

 The CMS RCMS framework provides expert-system 
functionality implemented in Java: asynchronous 
notifications can be received from sub-systems 
allowing each node to automatically handle 
problems. A separate, complementary tool for shifter 
assistance: the “DAQ Doctor”, uses the Perl scripting 
language. 

 In LHCb and in the experiments’ DCSs SMI++ is 
used. Since the tool is quite simple to use (due to its 
graphic PVSS II interface), it is used directly by sub-
system experts to synchronize and automate their 
domain specific operations. In LHCb, at top-level, 
central rules integrate the various sub-systems. 

 ALICE uses SMI++ too, but automatic error 
recovery is only performed in a few specific cases. 

There are two distinct decision making or reasoning 
approaches: Centralized or Decentralized. In the 
Centralized approach all rules are in one single repository 
and there is one central engine that has access to all rules 
and all necessary data, this is the case of Esper for 
example. In the Decentralized approach each sub-system 
deals with its own local problems, hierarchically, possibly 
in parallel. This is the case of SMI++ and also the ATLAS 
CLIPS and the CMS RCMS implementations. 

User Interfacing 
Many types of User Interfaces are used within each 

control system: there are alarm screens and message 
displays to warn the operators about problems, there are 
many monitoring displays providing information about 
the most important areas of the experiment and there are 
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operation interfaces allowing the operator to interact with 
the system, of which the most important are the Run 
Control and the DCS Control. Again here different tools 
were used by the four experiments: 

 LHCb and the four DCS systems use the JCOP 
Framework and its very powerful PVSS Graphic 
Interface Builder. As an example the ALICE DCS 
User Interface is shown in Fig 6. 

 ATLAS used Java in order to build a modular Run 
Control, for which central and sub-system developers 
can develop and contribute their own modules. 

 CMS uses WEB tools, Javascript + HTML, to design 
the Run Control (Fig. 7). 

 ALICE’s Run Control uses Tcl/Tk. 
 

 
Figure 6: ALICE DCS Interface. 

 

 
Figure 7: CMS Web-based Run Control. 

OPERATIONS 
All four experiments run 24 hours a day, 7 days a week 

during LHC running periods (several months a year). The 
number of operators on shift at any point in time is quite 
different in the different experiments: 

 ALICE:   4 - Shift Leader, DCS operator, ECS + 
DAQ operator and Data Quality + High Level 
Trigger operator 

 ATLAS:  8 - Shift Leader, DCS operator, Run 
Control operator, Trigger operator, Data Quality 
operator, plus three sub-detector operators 

 CMS:      5 - Shift Leader, DCS operator, Run 
Control operator, Trigger operator and Data Quality 
operator 

 LHCb:    2 - Shift Leader (DCS + Run Control 
operator) and Data Quality operator 

SIZE AND PERFORMANCE 
Even though different experiments made different 

choices, the size of the Control Systems is comparable. 
The amount of computers (PCs) needed to control the 
various parts of the experiment is summarized in Table 1. 

  

Table 1: Size of Control System in PCs 

 
 

Table 2: Some Selected Performance Numbers 

 
 

Needless to say that all four Experiments’ control 
systems work perfectly as can be seen in Table 2, in 
particular looking at the DAQ Inefficiency row. 
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