
HIGH LEVEL FPGA PROGRAMMING FRAMEWORK BASED ON
SIMULINK∗

B. Fernandes† , P. Gessler, C. Youngman, European XFEL GmbH, 22761 Hamburg, Germany

Abstract
Modern diagnostic and detector related data acquisi-

tion and processing hardware are increasingly being imple-

mented with Field Programmable Gate Array (FPGA) tech-

nology. The level of flexibility allows for simpler hardware

solutions together with the ability to implement functions

during the firmware programming phase. The technology

is also becoming more relevant in data processing, allowing

for reduction and filtering to be done at the hardware level

together with implementation of low-latency feedback sys-

tems. However, taking advantage of the flexibility and pos-

sibilities offered require significant amount of design, pro-

gramming, simulation and testing work usually performed

by FPGA experts.

A high-level FPGA programming framework is cur-

rently under development at the European XFEL in collab-

oration with the Oxford University within the EU CRISP

project. This framework allows for people unfamiliar with

FPGA programming to develop and simulate complete al-

gorithms and programs within the MathWorks Simulink

graphical tool with real FPGA precision. Modules within

the framework allow for simple code reuse by compiling

them into libraries, which can be deployed to other boards

or FPGAs.

INTRODUCTION
Located in Hamburg, Germany, the European X-Ray

Free-Electron Laser facility (European XFEL) will gener-

ate intense ultra short coherent X-Ray flashes for scientific

applications. These short bursts last for 600 μs and have a

4.5 MHz repetition rate [1]. Bandwidths of 10 GBytes of

data per second are expected from 2D pixel detectors cur-

rently being develop, while other detector types, like sys-

tems based on fast digitizing and analog-to-digital convert-

ers, can go up to 60 MBytes.

Considering this scenario, the European XFEL requires

a hardware framework which can cope with the expected

data bandwidth while offering flexibility and scalability.

High-speed data throughput and processing units are neces-

sary to collected and reduce the amount of data to be store.

The main Hardware platform is based on MicroTCA.4.

It offers high bandwidth communication between boards

and CPU via PCI Express (PCIe) and between boards via

point-to-point communications. Processing of data occurs

in CPUs, DSP and Boards/Digitizers with FPGAs [2].

FPGA technology offers a high level of flexibility. Al-

gorithms can be continuously upgraded without having to

∗Work partially supported by European Union Seventh Framework

Programme (FP7/2007-2013) under grant agreement nº283745.
†Bruno.fernandes@xfel.eu

change the hardware. The code can be reused and easily

integrate into different projects.

HIGH-LEVEL HARDWARE
PROGRAMMING TOOLS

Proprietary solutions for graphical high-level FPGA pro-

gramming are available on the market, the most popular

ones being Simulink from MathWorks [3] and LabVIEW

from National Instruments [4]. Both frameworks offer a

graphical programming language for modeling, simulat-

ing and analyzing a multidomain dynamic system, mak-

ing them an appealing alternative to Hardware Descrip-

tive Languages (HDL). Xilinx libraries are available for the

Simulink framework which include a considerable number

of modules optimized for Xilinx FPGA boards and incor-

porate the generation of ISE projects based on the users

module [5]. Recently, MathWorks introduced the HDL

Coder, a feature that allows for generation of synthesizable

HDL code fromMatlab functions which is compatible with

any FPGA [6].

Focused on signal processing algorithms, System Studio

from Synopsys presents a model-based design tool that of-

fers an extensive library of advance protocols and standards

for wireless and digital signal processing domain [7]. The

designs can be exported as C/C++ functions or as SystemC

modules, the latter compatible with any hardware.

Xilinx also offers the possibility of schematic-based de-

sign, where the top-level design consists of a schematic

sheet that refers to several lower-level macros. These may

be schematic-based modules, CORE Generator software

modules or HDL modules.

However when starting a new design, in either of the pre-

vious frameworks, it still requires that the user provides

information such as Pin placement and clock constraints to

achieve optimal performance. In particular, on the previous

two frameworks, users need to be familiarized with other

software frameworks (such as ISE) in order to synthesize

their code and program the FPGA.

Other solutions generally involve a wrapper of some sort

around a HDL language or a language package whose code

can be converted to synthesizable HDL code [8, 9]. This

approach makes development more accessible for users fa-

miliar with other programming languages at the cost of

losing some of the features that FPGA programming lan-

guages provide and development of a custom compiler to

generate synthesizable code.

A more suitable solution to our applications is being

develop by the CASPER project [10]. The framework

is based on the Simulink tool and uses custom libraries.

Libraries consist of algorithms and board specific blocks

TUPPC087 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

782C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology

that implement the features available for that board. In

this format, a complete FPGA project is developed within

Simulink. Users simply add all required board blocks

needed to develop their algorithm and the Xilinx Simulink

tools translate the final design to an ISE project. Integration

of user defined registers was achieved with use of Xilinx

EDK. The drawback of the CASPER framework is that the

available libraries are compatible only to the boards being

used on the project. The development of these blocks is

reported to be very time consuming.

FPGA PROJECTS STRUCTURE
Top level FPGA projects on the European XFEL are de-

veloped in VHDL and separated in two specific modules:

Board and Application (see Fig. 1). The Board module in-

cludes all code related and specific to configure and mon-

itor the Board features and also provides the Board inter-

faces (e.g. ADC/DAC, DDR2 controller, Clocks, etc.) to

the Application module. The latter implements user algo-

rithms and applications which may be Board specific. This

fixed structure allows for easy porting and update of both

board and application code. It provides an environment for

firmware programming for standardized and future hard-

ware.

 p s .

Since the basic Input/Output (IO) Board Interface are

provided on the Application module, users can focus on

the development of their application. Expert designers can

continuously improve and further develop the functionali-

ties available on the Board while not interfering with de-

velopments on the Application module.

Projects include an Internal Interface bus to define user

registers and memories which can then be access by PCIe

devices. The Internal Interface is a bus protocol which

includes a VHDL API package that eases register access

and definition. Register properties such as access rights,

type (internal or external bus register), bit size, data type

(unsigned, signed), number of integer and fractional bits,

memory length together with a brief description are defined

in VHDL table types. Assignment of address and genera-

tion of internal bus registers are preform automatically dur-

ing the compilation process. This allows register definition

to be preformed at the hardware level. An XML file with

all register information, including the assigned addresses,

is available after compilation. The Karabo software is able

to interper this file and provide a user friendly environment

which allow users to communicate with the design on the

FPGA [11].

Application Development
FPGA programming is time intensive and requires spe-

cialists, however most applications and algorithms are con-

ceptualized by users unfamiliar with FPGA programming.

For the European XFEL, a high level FPGA framework

is being developed that allows for users with no prior HDL

knowledge to develop their algorithm modules which can

be integrated in a top VHDL project. The framework

should allow user defined registers and memories compati-

ble with the Internal Interface protocol and to port applica-

tions to different projects.

The framework being developed is based on the

Simulink tool. Use of a graphical programming language

allows for structured algorithms modules, reusability of ex-

isting blocks, while making debugging, simulation and de-

velopment much faster. Integration of Simulink with Mat-

lab also allows for powerful test environments, namely the

usage of real data and integration of processing algorithms

developed in other programming languages in simulation,

time and frequency domain analysis as well as detail sig-

nal analysis. Currently, all boards designed for the Euro-

pean XFEL incorporate Xilinx FPGAs, making the avail-

able Xilinx Simulink library for the tool an asset.

FRAMEWORK WORKFLOW
The user design environment should be automatically

setup for the target board and blocks that simulate the be-

havior of available features must be available so that al-

gorithms and applications are develop within realistic sce-

narios. The framework must allow for user defined regis-

ters and memories and generate the necessary logic to later

communicate with the bus protocol.

Simulink based applications should be included on the

Application Module of a FPGA project. The interface is

fixed by the Application Module IO since all features must

be available together with the necessary bus protocol ports.

Our FPGA project structure abstracts the user from the in-

tegration of his module in the top level module since all the

require information concerning Pin placement, clock rout-

ing and Board features interface are already defined on the

FPGA top level project.

Board Definition
All projects begin with the integration of the Project Def-

initions block in the design. With this block the user defines

for which board the algorithm is going to be develop as well

as the bus protocol (see Fig. 2).

The block will generate the IO available for the chosen

board and examples of expected input signals. The user can

remove IOs which are not suitable for the algorithm being

development and reinsert them later if necessary.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC087

Hardware Technology

ISBN 978-3-95450-139-7

783 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

All Xilinx based algorithms in Simulink need to have the

System Generator block, which defines the target FPGA

as well as clock frequency constraints. The Project Defi-

nitions block automatically includes the System generator

block and defines the previous parameters according to the

board.

User Registers and Memories
The BUS block allows for users to define registers and

memories which are later accessible by the chosen protocol

(see Fig. 3). While developing the algorithm, user registers

are treated as IO ports, abstracting the user from hardware

concepts such as write and read cycles, address indexing

and data latching. The data saved in memories is also ac-

cessible in the Matlab workspace.

Figure 3: BUS block example. The block regenerates ac-

cording to the parameters defined by the user.

The BUS block has a set of parameters which are used

to regenerate the block properties according to the values

specified.

Board Specific Blocks
Specific blocks are available on the library which will

accurately simulate the behavior of features available on

the board.

As an example, in the European XFEL a Low Latency

Protocol (LLP) is used to distribute machine experimental

related data for feedback and VETO type systems. This

protocol is used on different interfaces such as backplanes

and SFP connectors. The XFEL Simulink library includes

a Transmitter and a Receiver LLP block whose behavioral

is identical to that expected on the FPGA. When included,

the block recognizes for which board the algorithm is being

developed and presents the different interfaces available for

that board as well as number of connectors. Users can eas-

ily simulate the transmission of data with this protocol and

incorporate it in their algorithm.

Algorithm Integration
Once development of the application is completed, the

whole design must be processed to integrate the top level

FPGA project. A separate Simulink design is generated

based on the user algorithm with user defined registers and

memories being replaced with suitable blocks which are

compatible with the chosen bus protocol. A netlist file of

this final design is then generated and inserted on the ISE

project. The resulting bit file is then used to reprogram the

target FPGA. All the previous steps will be done automati-

cally, the user needs only to inform the framework that the

algorithm is ready to be compiled. Currently, the user has

to manually add the generated Simulink files into the ISE

project in order to generate the final bit file.

In the case of the Internal Interface, which normally

works in a different clock domain than the algorithm, each

user register/memory is replaced with a Multiple clock do-

main register/memory. A separate module assigns different

addresses to each register and generates the necessary logic

to communicate with the bus protocol while taking into ac-

count the information of each register (such as bit size, read

and write access, memory length, etc.). The user is also

given the option to generate a standalone module of his al-

gorithm in order to include it on the XFEL Simulink li-

brary. User register definitions are also compiled in a XML

file to be interper by the Karabo software framework.

Figure 4 shows the workflow of a simple example de-

velop in this framework.

FURTHER DEVELOPMENT
As of now, the framework supports user defined registers

and memories compatible to the Internal Interface proto-

col. It is planned to integrate additional protocols, namely

Ethernet, Wishbone and UART. This will allow the frame-

work to be flexible and compatible with other boards and

projects outside of the European XFEL, with developed al-

gorithms being compatible and accessible to a larger user

community.

Additionally partial reconfiguration in the FPGA

projects structure, i.e., the ability to dynamically mod-

ify blocks of logic by downloading partial bit files while

the remaining logic continues to operate without interrup-

tion [12] will be incorporated. This process reduces synthe-

sis time and drastically enhances the flexibility of FPGAs.

TUPPC087 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

784C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology

Figure 4: Design example. The Bus Interface logic is generated during Algorithm Integration based on user defined

registers. The bus model block includes the Bus Interface logic while a copy of the original algorithm is wrapped on the

user model block.

CONCLUSION
The described high-level FPGA programming frame-

work allows users unfamiliar with FPGA programming to

easily develop, simulate and integrate their algorithms into

large FPGA projects.

Current European XFEL FPGA projects are already be-

ing develop in this framework with positive results. Users

with basic digital electronic knowledge were able to de-

velop entire algorithms and successfully test and integrate

in existing FPGA projects.

REFERENCES
[1] M. Altarelli et al., “XFEL: the European X-ray Free-

Electron Laser technical design report”, DESY XFEL

Project Group (2006)

[2] C. Youngman et al., “Electronics Developments for High

Speed Data Throughput and Processing”, TUPPC086,

ICALEPCS-2013, to be published.

[3] MathWorks Simulink, http://www.mathworks.com/

products/simulink

[4] NI LabVIEW, http://www.ni.com/labview

[5] Xilinx ISE, http://www.xilinx.com/products/

design-tools/ise-design-suite/index.htm

[6] MathWorks HDL Coder, http://www.mathworks.com/

products/hdlcoder

[7] Synopsys System Studio, http://www.synopsys.com/

Systems/BlockDesign/DigitalSignalProcessing/

Pages/SystemStudio.aspx

[8] MyHDL, http://www.myhdl.org.

[9] Milkymist Labs, “Migen” http://www.milkymist.org.

[10] Collaboration for Astronomy Signal Processing and Elec-

tronics Research (CASPER), http://casper.berkeley.

edu.

[11] B. C. Heisen et al., “Karabo: An Integrated Software Frame-

work Combining Control, Data Management and Scientific

Computing Tasks”, FRCOAAB02, ICALEPCS-2013, to be

published.

[12] Xilinx Partial Reconfiguration, http://xilinx.com/

tools/partial-reconfiguration.htm.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC087

Hardware Technology

ISBN 978-3-95450-139-7

785 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

