
DSP DESIGN USING SYSTEM GENERATOR 
 

Jean Marc Koch   -   ESRF Grenoble France 

 

Abstract 
   When designing a real time control system, a fast data 
transfer between the different pieces of hardware must be 
guaranteed since synchronization and determinism have 
to be respected. One efficient solution regarding these 
constraints is to embed the data collection, the signal-
processing and the driving of the acting devices in an 
FPGA even if this solution does not come without 
difficulties. To overcome one of these difficulties, it is 
possible to open the development of the signal processing 
to non HDL (Hardware Description Language) 
specialists; here, System Generator [1] has been chosen 
for development purposes, in Simulink / Matlab from 
Xilinx and The MathWorks. Another challenge with such 
a system design is the ability to integrate real time models 
on already pre-configured hardware platforms. Although 
the hardware can be ready for communication, standard 
PCI or PCI express bus and dedicated fast data links like 
Gb Ethernet, the corresponding interfaces must be 
carefully defined and designed to communicate with HDL 
System Generator control systems blocks. Therefore, the 
work in this paper describes with two examples how to 
take advantage of hardware delivered ready for use from a 
communication point of view and how to get it ready to 
integrate a design under System Generator. The 
advantage of Simulink for the simulation phase of the 
design is also presented. 

INTRODUCTION 
Particle accelerators rely on hardware and software 

platforms with high speed, high-bandwidth acquisition, 
timing and synchronization, and advanced control to 
solve some instrumentation and control challenges. 

When it comes to real-time data acquisition and 
processing, one solution is to keep this part at a low level 
to avoid the overhead imposed by multiple layers and data 
transfer.  

FPGAs are now widely used as signal processors at the 
ESRF: one of the latest developments is the dynamic 
computing of tune estimate based on the accurate 
measurement of the currents in the booster magnets 
during the accelerating cycle of the electrons.  

The part of the code concerning the measurement of the 
currents will be re-used later for driving new ramping 
power supplies for the booster magnets. 

Another example of processing embedded in FPGA 
was the beam position correction updated at 10 kHz:  

224 electron beam position monitors connected to 8 
FPGA stations, themselves connected to 96 horizontal 
and vertical steerers make up this system which runs 

continuously during operation of the storage ring to 
compensate for the beam motion [2].  

FPGA code development is based on High Level 
Language for the different data transfers and on System 
Generator for the signal processing. 

FPGA CODE DEVELOPMENT 
   There are several possibilities for the development of a 
code using System Generator; in the following two 
examples it is used in the same way: System Generator 
design is part of a bigger project and as such needs to be 
connected to this. 

System Generator Project Integration 
The Signal Processing is described with System 

Generator, simulated with the Simulink tools, either in 
computer simulation or in hardware in the loop and then 
the corresponding HDL code is generated. During this 
process a wrapper is produced describing the gateways 
which have to be connected with the "hand written" part 
of the code.  The integration of the System Generator 
Project to ISE Project Navigator is made by simply 
adding one file with the extension “.SGP”, an empty file 
which identifies the location of the System Generator 
model (see Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  1: Integration  flow between  System  Generator 
and Project Navigator. 

Design iterations 

.SGP ISE  
Project file 

_ HDL Netlist 
_Core Generator 
Netlist 
_ Constraints 
_ Simul. files 

Project Navigator 
   
 
  

       

Top level design 
.SGP 

Synthesize 

Constraint 
Consolidation & 

Association 

Implement 

Add 
.SGP 

MATLAB 
Simulink 

Model file 

System 
Generator 

TUPPC082 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

770C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology



APPLICATIONS  
   The two applications described here follow the flow 
mentioned above. All the tasks related to data 
communication external to the FPGA are coded in vhdl. 

Booster Tunes Estimation Calculated from the 
Currents in the Magnets 

The booster is a circular machine designed to accelerate 
the electron beam from ~200Mev to 6 GeV energy. 

During the ramping, since the currents in the 3 main 
magnet families involved are not perfectly proportional 
all along the accelerating cycle and can slightly vary in an 
unpredictable way from one cycle to the next, the tunes 
are varying accordingly. As we need to know the value of 
the tunes to excite the beam for a cleaning process [3], a 
measurement and calculation in real time will be 
performed to drive an amplifier with the correct 
frequency to perform a blow-up of the unwanted bunches 
of the beam (see Fig. 2). 

Figure 2:  Layout of the booster tunes estimation 
calculated from the magnets currents.  

Required Interfaces in the FPGA 
1) Driver for ADCs readout from serial to 24bits word 
2) Misc I/Os for the trigger and cleaning device 
3) PCIe interface with ComExpress board (see Fig. 3) 

Figure 3: Pieces of code to be connected. 

Figure 4: Simulation with Simulink / System Generator. 

To achieve a very accurate measurement, the DCCTs 
have two ranges; an extra output has a full scale of only 
10% of the full range. The selection between the two 
outputs is performed in the first System Generator block. 
The second block is dedicated to the calculation with fix 
point data of the variations of the tunes around their 
nominal values (see Fig. 4).   

   Once the code has been simulated, it can be tested on a 
preconfigured hardware platform thanks to the “Hardware 
in the Loop” (see Fig. 5) of System Generator. After that 
the code produced is transferred to a target through a 
JTAG or Ethernet connexion, the FPGA is configured and 
all the processing described in between the gateways on 
figure 4 then runs on the FPGA. The gateways will 
convert floating-point inputs to fixed-point and fixed-
point to floating-points outputs for the simulation. 

Figure 5: Signal processing with Hardware in the Loop.

The input signals are theoretically pure sine waves with 
a well defined relation in amplitude and phase between 
them, but the accuracy required, between 10-4 to 10-5, 
makes that all disturbances must be taken into account. 
We can see on the right part of figure 5 the current in a 
dipole during the energy ramping, the noise introduced 
and the resulting tunes estimation. The current in the 
quadrupoles are described without noise. 

By introducing noise and harmonics on the signals at 
Simulink level, we can check the reproducibility that  can 
be reached with such measurements, suppress digital 
noise by choosing the right words size and, finally, 
generate the code that will be embedded in the real target. 

Beam excitation 

Dipole P.S. 

F. Quad. P.S. 

D. Quad P.S. 

24 b 
ADCs 

500kS/s 

FPGA 
board 

CPU board Ethernet 

Amplifier
for bunch 
cleaning 

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC082

Hardware Technology

ISBN 978-3-95450-139-7

771 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



FPGA Based Fast Orbit Correction System 
    The architecture chosen is such that from the electrons 
beam to the power converters, the whole data processing 
is performed inside FPGAs: the front-ends are digital 
BPMs “Liberas” and the data are dispatched to 8 stations 
equipped with Virtex-5 FPGAs through optic fibers 
thanks to a custom Communication Controller designed 
and implemented in VHDL at Diamond Light Source [4] 

 

 
Figure 6: Fast Orbit Correction FPGAs interconnections. 

FPGAs Stations for Orbit Correction System 
The choice of performing the corrections in the FPGA 

has been guided by the fact that no real time operating 
system was supported at the ESRF when we launched this 
development. The obvious advantage of this solution is 
the effectiveness of the FPGA and therefore the simplicity 
of the final equipment but with nevertheless a drawback 
in the sense that the development process is more 
complex if compared with a DSP or processor 
programming. 

Required Interfaces in the FPGA 
1) Shared memories between Communication 

Controller and correction process 
2) Outputs registers towards the power supplies 
3) Shared memories and registers for the 

communication with PCI for the remote control 
 

 
Figure 7: Code development distribution. 

 
   Thanks to the libraries delivered ready to use for the 
communication with the PCI by the supplier and the 
developments already done for the Communication 
Controller [4], the development in vhdl is quite limited.  

Processing  
Functions of the code embedded in the FPGA:  

1) Collect the data from the BPMs at 10 kHz with the 
Communication Controller and transfer to System 
Generator through shared memories and registers (coded 
in High Level Language) These interfaces have to 
conform to the symbolic names, the words length and 
memories depth defined in the vhdl development.  
2) Obtain the parameters from the PCI (coded H.L.L.) 
3) Process the corrections (coded in System Generator) 
(see Fig. 8) 
4) Send the set-points to the power supplies (coded 
H.L.L.) 
5) Send the set-points for data recording to the 
Communication Controller (coded H.L.L.) 

6) Synchronous start and stop of the correction on the 8 
stations in the same 10 kHz cycle.  

FPGA code development with Simulink 
  

 
Figure 8: Whole signal processing in System Generator. 

 
 The processing can be tested and debugged first with 

bit true cycles in Simulink before any FPGA code 
production and configuration, for example the tuning of 
correctors dedicated to the beam stabilisation (see Fig. 9). 

     

 
Figure 9: Corrector behaviour test with Simulink. 

 

TUPPC082 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

772C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology



 To check the behavior of the model, real data are 
introduced at the initialization of the simulation and 
processed with the components from Xilinx and then, data 
obtained from the output can be visualized (see Fig. 10) 
or saved for analysis under Matlab (see Fig. 11). In this 
simulation the power supplies, magnets and vacuum 
chambers are modeled as a simple delay of 700μs 
between the correction output and the reading of the beam 
position. 
    If required, as shown in the previous example, a test 
with “hardware in the loop” can be performed thanks to 
the possibility to transfer the code produced to a target 
through a JTAG or Ethernet connexion.  
 

 
Figure 10:   a) Beam position before correction. 
b) Correction applied.    c) Beam position stabilised. 
 

 
Figure 11: Expected results of the correction computed 
from the data written in the MATLAB base workspace. 
 
    All the functions except the signal processing were 
either developed or integrated by an external company 
specialized in vhdl coding. Provided that the interfaces 
are instantiated to cover the needs of all data transfers 
envisaged, the data processing under System Generator 
may evolve without changing the other codes. The 
synthesis, placement and routing can be launched with a 
new file from System Generator all the others being 
frozen (see Fig.12). 

 
Figure 12:  Merging of all sources with Xilinx tools. 

Tests of the Hardware Setup 
   The data reception of the Beam Positions at each cycle 
was checked as well as the right connection with the 
power supplies. Indeed, it is easy to design a model in 
System Generator which copy the data received in a 
shared memory to the outputs connected to the Power 
Supplies inputs and check the current of these last ones.  
To achieve this test, an FPGA board simulating the 
network of the 224 BPMs delivers known data according 
to their numbering.  

CONCLUSION  

   Progress in FPGA technology along with availability of 
high level tools for modelling, simulation and synthesis 
have made FPGA a key platform. Today, it is a good 
choice for the hardware development and implementation 
of high-performance applications requiring rigorous 
calculations in real-time. Many developments at ESRF 
have proven that FPGAs can outperform DSPs and 
embedded processors in signal processing, while 
minimizing the hardware burden of multiple data paths. 
The right tools and techniques coupled with innovative 
features in silicon architecture can produce complex DSP 
functions in a single FPGA. Xilinx System Generator is a 
system level modelling tool that facilitates FPGA 
hardware design by extending Simulink / Matlab in 
numerous ways to provide a powerful modelling 
environment. It opened the field of FPGA design to non 
specialists through its design environment. In addition, 
the possibilities for testing and verification both at 
simulation level and combined simulation / hardware in 
the loop are an essential point to successfully implement a 
design. 

REFERENCES 
[1] Xilinx System Generator for DSP Reference Guide. 
[2] The New Fast Orbit Correction System of the ESRF 

Storage Ring   E. Plouviez et al.   DIPAC 2011. 
[3] Cleaning of parasitic bunches in the ESRF booster 

synchrotron E. Plouviez et al.    EPAC 2004. 
[4]  Diamond Light Source Fast Orbit Feedback 

Communication Controller Specification and Design 
Isa Uzun et al.  January 2009. 

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC082

Hardware Technology

ISBN 978-3-95450-139-7

773 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


