Proceedings of ICALEPCS2013, San Francisco, CA, USA

TUPPCO045

SOFTWARE DEVELOPMENT FOR HIGH SPEED DATA RECORDING
AND PROCESSING*

D. Boukhelef™, J. Szuba, K. Wrona, C. Youngman
European XFEL GmbH, Hamburg 22761, Germany

Abstract

The European XFEL beam delivery defines a unique
time structure that requires acquiring and processing data
in short bursts of up to 2700 images every 100 ms. The
2D pixel detectors being developed produce up to 10 GB/s
of 1-Mpixel image data. Efficient handling of this huge
data volume requires large network bandwidth and com-
puting capabilities. The architecture of the DAQ system is
hierarchical and modular. The DAQ network uses 10 GbE
switched links to provide large bandwidth data transport
between the front-end interfaces (FEI), data handling PC
layer servers, and storage and analysis clusters. Front-end
interfaces are required to build images acquired during a
burst into pulse ordered image trains and forward them to
PC layer farm. The PC layer consists of dedicated high-
performance computers for raw data monitoring, process-
ing and filtering, and aggregating data files that are then
distributed to on-line storage and data analysis clusters. In
this contribution we give an overview of the DAQ system
architecture, communication protocols, as well as software
stack for data acquisition pre-processing, monitoring, stor-
age and analysis.

INTRODUCTION

European XFEL [1], a new research facility currently
under construction in Germany, will generate ultra-short
and extremely intense X-ray flashes. The facility will open
spectacular research opportunities for scientific and indus-
trial users when operation starts in 2016.

100 ms 100 ms

Train n-1 Train n+1

Train n
99.4 ms 99.4 ms

/4 /4
7

Figure 1: XFEL bunch structure.

Pulses are delivered at 4.5 MHz in pulse trains of 600 us
duration with a nominal 10 Hz repetition rate. Each train
consists of up to 2700 pulses (see Fig. 1).

Large area 2D pixel detectors are being developed(e.g.
LPD [2]) which will be able to capture and send up to

*Work partially supported by European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement n°® 283745
T djelloul.boukhelef@xfel.eu

Experiment Control

10 GB of image data per second to backend DAQ sys-
tems. Other detector technologies (TOF, Fast-CCD, 1D
spectrometers, MCP delay lines, etc.) produce smaller
amounts of data at the same rate. Additionally diagnos-
tic and control devices (GigE commercial cameras, posi-
tioning motors, vacuum sensors, etc.) produce small data
volumes at lower rates. The requirements placed on the
DAQ architecture and the processing and recording soft-
ware used are thus driven by the large 2D pixel detectors
and their input is highlighted in the results presented here.

XFEL beam delivery defines a unique time structure that
requires acquiring and processing large amount of data in
short bursts of time. Efficient handling of such huge and
fast data streams requires large network bandwidth and
computing capabilities.

In this paper the data acquisition (DAQ) and processing
system being developed at the European XFEL is described
by giving an overview of the architecture of the DAQ sys-
tem, followed by a description of the design and implemen-
tation of prototype used to test the software developed.

DATA ACQUISITION AND PROCESSING

The DAQ system is designed to handle large volume data
streams coming from multiple fast and slow detectors and
sensors, perform on-line data monitoring, rejection and re-
duction, and forward raw data for storage and to scientific
computing farm for analysis. Additionally, the system pub-
lishes pertinent near real-time information about quality of
data and services to be used by the users and scientists.

General Architecture

XFEL’s DAQ system is structured into five layers (see
Fig. 2) with well-defined inter-layer APIs and communi-
cation protocols . Following a data-driven model, data are
pushed from their sources (e.g. 2D detectors, triggers, etc.)
through FEIs (e.g. train builder) to the PC layer farm and
then on to storage stack and processing clusters.

Detector Front-ends
2D mega-pixel cameras, digitizers, and diagnostic sen-
sors acquire and digitize analogue signals.

Front-end Interface

Detector interfaces are needed to transfer detector data
to the backend, for the large 2D detectors a train builder [3]
is used. This custom design FPGA-based ATCA board as-
sembles and processes data generated by large-area 2D im-
age detector modules (16 per Mpixel). The train builder, as

ISBN 978-3-95450-139-7
665

TUPPC045

Image: 2 MB 2 KB 2 MB
Train: 1 GB 5 M8 2m8 — Typical throughputs
PCL: 10 GB/s 50 MB/s 20 MB/s
20 pixel et || 1DFee |- Camera |- o [TONtEndElectronics
(FEE)

I
1]

10GBE,
UDP Custom UDP

5t [trainguider || Fr }[FE1 |- = (FFrEIr)" End Interface

§ Swi(ch>< 1 l

- - | PC Layer | ---------- | PC Layer I ----------- == PC Layer
Switch>< smtchx

== Data Cache

10GBE,
TCP

| Online Storage |» | Online Storage
’ EC]__lluster
Switch T Switch

- | Offline Storage and Archive

Slice

Figure 2: Multi-layer DAQ system at XFEL.

all FEIs, outputs pulse ordered images from a single train
to PC layer servers via 16 10 Gbps (SFP+) switched links.
The train builder pushes using plain UDP protocol.

PC Layer

The PC layer, a core element of the DAQ system, is
a homogeneous high-performance computer farm located
between FEI and on-line data cache. Each PC layer node
receives periodically a full train of images acquired during
a given burst. The PC layer is required to allow full speed
data receiving and writing through to on-line storage and
analysis, this capability will be used to debug the data re-
jection and reduction systems.

Acquire Train builder,

, Detectors

l S -- Train Transfer Scientific computing
H Protocol (TTP) m_
send [nn
3D reconstruction
Data generation | S =
Receive | TL] 12] PC Layer ||||_= — ety
Process --

Online analysis

Format --
send Multicast ' I
TCP:

Acquisition, processing
& Formatting Read
Write --

Storage

Figure 3: Data acquisition, processing and storage systems.

PC layer node software is organized as a pipeline that
can handle multiple trains concurrently at different stages
(see Fig. 3). Each PC layer node will be fed by train builder
with one full image train periodically in round robin fash-
ion. After receiving a full train in memory, and while wait-
ing for next one, PC layer node performs several checks,
pre-analysis and transformation (e.g. image rejection, for-
matting) on the train data received before sending it to per-
manent storage. The various steps are described below.

Readout: The most important task of a DAQ is to allow
for high speed data receiving from different data sources
and safely send it to storage and analysis. The largest
amount of data comes from 2D pixel detectors through train
builder which feed the PC layer with up to 10 GB of im-
age data every second per detector Mpixel. Data transfer

ISBN 978-3-95450-139-7
666

Proceedings of ICALEPCS2013, San Francisco, CA, USA

is based on plain UDP protocol. Sophisticated tuning of
software and hardware are required in order to minimize
traffic jam and data loss. Other fast and slow monitor data
streams (e.g. digitizers and sensors) are also sent to PC
layer through dedicated TCP channels. Traffic manage-
ment should ensure that any train-related data needed by
PC layer activities (e.g. monitoring, fast analysis) is avail-
able at the corresponding node without data loss.

Monitoring: Another mandatory feature of the DAQ
system is to continuously monitor the quality of data
streams and gather statistics about system and software sta-
tus and make it available to other components and users.
Monitoring tasks performed by the PC layer are grouped
into four classes: control quality of data streams (availabil-
ity, validity, etc.); monitor train data content (train builder
and computational algorithms,); publish system health and
resources status; and gather statistics on application activ-
ities and performance. Monitor data is used by operators
and scientists to understand whether the experiment is per-
forming correctly, and allows any necessary fine tuning of
the hardware or software parameters at runtime, as well as
detecting and fixing problems quickly.

Rejection and reduction: The DAQ system is designed
to enforce data reduction and rejection in all layers aimed
at reducing data storage and transfer requirements. At the
electronics level for instance, the VETO system evaluates
pulse information and distributes a trigger decisions to de-
tector front-end ASICs and FPGAs allowing them to re-
move poor quality images. To further improve the data
quality and reduce the amount of data to be stored, addi-
tional data rejection and reduction algorithms are also run
at the PC layer.

Pre-processing: Depending on time and resources
available for each train, PC layer nodes can also perform
additional data pre-processing tasks, such as hit and Bragg
peak finding. These algorithms, which are mainly be pro-
vided by scientists, should be fast and reliable and be ca-
pable of removing unwanted low quality pulse data before
the storage layer.

Formatting: PC layer prepares data for writing to stor-
age by formatting and aggregating raw input train data and
any data produced by the PC layer processing into a com-
mon file format. The latter is required to be easily ex-
ploitable (i.e. read/write, retrieve) later by the scientific
computing pipeline used as well as additional external soft-
ware tools. Currently, the system exports data using HDF5
standard [4], a self-descriptive and portable data model
widely used by the scientific community. HDF5 is open
source and provides rich support for handling complex data
types and integrated performance features. Additionally a
unified hierarchical file structure to store most of data types
(i.e. values, attributes, annotations, etc.) according to their
sources, frequency and usage, etc. has been developed.

On-line and Off-line Storage

On-line storage allows for full speed writing of raw data
to disks as soon as it comes out of the PC layer. Its aim is

Experiment Control

Proceedings of ICALEPCS2013, San Francisco, CA, USA

to decouple real-time data readout from scientific comput-
ing and off-line storage tasks. The capacity and bandwidth
of on-line storage should be sufficient to handle all data
produced during an experiment. Off-line storage is mainly
used to store raw and processed data (results of scientific
analysis) for longer period of time.

DAQ PROTOTYPE IMPLEMENTATION

A simulation prototype of the DAQ software to be used
for handling the large amounts of data coming out of de-
tectors at very high rate has been developed (see Fig. 4)
and tested on hardware acquired for testing the DAQ read-
out system. The implementation targets mainly high per-
formance data recording with special focus on scalability,
reliability, and flexibility.

Network Time Server

Train Builder Emulator

] (Master)

® *Net-timer

2 TCP *PCL nodes

S (= *CPU, Network

KT} 1

5 ¥ < ¥ *TB Emul

3 S Data Data Emulator

P G . *Train Metadata

s Feeder 1 Feeder 2 Feeder M *Data files

= H i S0P i *CPU, Network, etc.

§_ : ¢ - *Storage nodes

i PCL node 1 PCLnode 2 FORUICEIN orrain Metadata

g *CPU, Network, etc.
LTCP

*Folder
*Naming rules
*CPU, folder

Storage

Configuration files
(xml)

Figure 4: Prototype of the DAQ system.

Karabo Device and Device-server Model

XFEL’s DAQ system is designed as a hierarchical and
modular solution around a central message broker service.
Following a component-oriented development, tasks in
the system are delegated to independent software compo-
nents called devices. Control commands, property change
events, and slow and small data are exchanged between
system components and users through the broker. Ded-
icated point-to-point TCP connections are established on
need for large or time critical data transfers such as those
used between layers in the DAQ architecture.

Devices are developed using the Karabo [5] software
framework, a homogeneous pluggable distributed applica-
tion environment currently under development at the Eu-
ropean XFEL. Developed natively in C++ (with a binding
to Python), Karabo provides a rich API landscape including
device self-description and configuration, program-flow or-
ganization, logging and communication, etc. Karabo is in-
tended for use in control, data-management, DAQ and sci-
entific workflow tasks.

Experiment Control

TUPPCO045

Train Builder Emulator

The top level component of the simulation prototype,
those that feed data into the simulation, consists of a set of
devices that emulate the function of train builder board. En-
tirely distributed, the emulator is composed of a set of data
feeders and a master device that synchronizes data gener-
ation and sending to PC layer nodes. Data feeder device
generates detector-like image data, formats it into trains,
and sends it out using the train transfer protocol (see next
section) to one PC layer node whose address is designated
on-the-fly by the master device.

The network timer device emulates the timing system
and generates one train-tagged network packet every 1.6
second which corresponds to the smallest number of PC
layer nodes likely to be used with a 1 Mpixel detector. For
every signal received, the master instructs one data feeder
to generate a new train data and send it to the next PC layer
node in round robin fashion.

PC Layer

PC layer node application is implemented as a multi-
threaded C++ application, where each thread is responsi-
ble for one activity such as data readout, formatting, pro-
cessing, etc. Common data are stored in a shared mem-
ory block, where data from each train are handled together
as one envelope identified by the train number. To op-
timize memory bandwidth data copying and moving is
avoided and only references are exchanged between worker
threads. Inter-thread communication is done through high-
performance thread-safe queues, a generic C++ templated
queue implemented for this purpose.

The PC layer node application is designed as a series of
tasks under strict control. Each task is well defined and
assigned to dedicated thread. Data receiver thread ensures
the correct reception of UDP packets from train builders,
stores data into the associated train envelope and notifies
other worker threads which will start the processing (e.g.
data rejection) when all needed data are available.

Fast data

Slow data

Secondary process

1:1

Datareceivers

Scheduler

Shared
Memory

Primary process

<

Synchronization

‘ 1N

Analysis

Data aggregator &
formatter

.
‘ HDFS files

Network writer

Multicast -

Online Data Cache & Scientific Computing

1:10

Figure 5: PC layer node internals.
Intermediate results generated by processing algorithms
are stored along with raw data in the corresponding train
ISBN 978-3-95450-139-7
667

TUPPC045

envelope. Post-processing and formatting tasks aggregate
all partial results and find out which images are to be dis-
carded and which ones should be stored in HDFS5 files.

Scientists are expected to provide most of the detailed
monitoring and processing algorithms to be used as plu-
gins compiled in shared libraries. These algorithms will
be installed and run in the PC layer. Careful vetting of the
algorithms provided will be required to ensure that their us-
age does not compromise PC layer operation. Algorithms
that do not pass requiremenst based on execution time, re-
source usage, etc. will be discarded.

As a general rule algorithms provided by third parties
will be decoupled from the core PC layer application so
that their failure will not stop the PC layer operating. The
results from crashed applications are, of course, not avail-
able and this will usually require the run to be ended - and
the problem fixed.

Data exchange between readout thread, users’ algo-
rithms, and post-processing is implemented using shared
memory. A central scheduler synchronizes their activities.
Raw data is always kept intact until just before formatting.
In case of failure at the users’ pipeline, this later is simply
shortcut, and raw data is saved as avoiding any data loss.

The other reason for this separation is that the data re-
ceiver thread may require higher system privilege in order
to set proper running parameters (CPU binding, thread pri-
ority, etc.). For security reasons, users’ algorithms will run
whithin the secondary process at normal user privilege.

Storage Servers

Data cache is built of standalone storage servers. Lite-
weight storage server runs on each box and constantly re-
ceives streams of HDF5 formatted files from PC layer and
dumps them to disk. Advanced features such as direct IO
and Linux splice function were investigated to speed-up
writing to disk and achieve full bandwidth performance.

TRAIN FORMAT AND TRANSFER
PROTOCOL

Train data format defines a generic layout of large data
blocks interchanged within the DAQ system. Mainly used
to define the laytout of data sent out by train builder to PC
layer, it is also adopted by the software device that emu-
lates the train builder when this later is not used. Train data
format defines five sections in the following order: Header
holds global properties of the entire train (e.g. train num-
ber); Images are blocks of data which belong to the same
train; Descriptors are the set of properties for individual
images (e.g. size); Detector block contains information
specific for the detector and used mainly for debugging pur-
pose; Trailer contains properties of the entire train which
are appended on the fly (e.g. checksum).

Train Transfer Protocol

The train transfer protocol (TTP) defines a generic
application-level protocol for interchanging large data

ISBN 978-3-95450-139-7
668

Proceedings of ICALEPCS2013, San Francisco, CA, USA

blocks within the DAQ system. TTP is based on UDP pro-
tocol. The whole data block (frame) is divided into small
UDP packets. Each packet is tagged with frame number
(32 bits), packet sequence number (24 bits) and start-of-
frame (sof), end-of-frame (eof), and padding flags. Packets
belonging to the same data block hold the same frame num-
ber which distinguishes them from other frames’ packets.
TTP is implemented by both train builder’s FPGA and
emulator software device. The trailer mode variant places
the sequence numbers and flags at the end of each packet,
to allow for optimized memory usage, as the trailer from
current packet is overwritten by data from next packet.

SUMMARY AND OUTLOOK

A complete slice of the DAQ architecture to be used
at the European XFEL, from detector front-end interface
through to the data cache layers, has been implemented in
hardware and software. The system has been used to eval-
uate the DAQ performance for the large area 2D detectors
being developed for us at the facility, these detectors make
the largest demands on the DAQ in terms of data handling.
The use of the UDP protocol for data transfer out of the
front-end interface of the detectors to the backend PC layer
system required sophisticated tuning of NIC driver, OS ker-
nel and application before acceptable low data loss rates
could be achieved with concurrent 10 GE line-speed (FEI
input and Data Cache output) operations.

On-line storage system is built using commodity hard-
ware, for the test eight standalone storage servers. Six are
equipped with 12 x 900GB SAS disks (internal storage),
the other two with 12 x 3TB NL-SAS disks (external stor-
age). Test results show that both storage configurations
were able to achieve the desired rate, i.e. 1.1GB/s and
0.97GB/s per server, respectively.

Development of software for use in backend DAQ sys-
tems has started. Results of simulation on real hardware
show that network and storage performance meet the re-
quirements for 1-Mpixel cameras. Next steps include data
rejection and monitor performance measurements.

REFERENCES

[1] M. Altarelli et al., “XFEL: the European X-ray Free-Electron
Laser technical design report,” DESY XFEL Project Group
(2006)

[2] M. Hart et al., “Development of the LPD, a high dy-
namic range pixel detector for the European XFEL,” IEEE
NSS/MIC 2012, pp. 534-537.

[3] J. Coughlan et al., “The train Builder Data Acquisition Sys-
tem for the European-XFEL,” TWEPP 2011, Vienna, Austria.

[4] “HDFS User’s Guide,” http://www.hdfgroup.org/HDF

[5] B. C. Heisen et al., “Karabo: An Integrated Software Frame-
work Combining Control, Data Management, and Scientific
Computing Tasks,” To Appear in ICALEPCS 2013, USA.

Experiment Control

