
PROTOTYPE OF A SIMPLE ZEROMQ-BASED RPC IN REPLACEMENT
OF CORBA IN NOMAD

Y. Le Goc*, F. Cecillon, C. Cocho, A. Elaazzouzi, J. Locatelli, P. Mutti, H. Ortiz, J. Ratel,
Institut Laue-Langevin, Grenoble, France

Abstract
The Nomad instrument control software of the Institut

Laue-Langevin (ILL) is a client server application. The
communication between the server and its clients is
performed with CORBA, which has now major
drawbacks like the lack of support and a slow or non-
existing evolution. The present paper describes the
implementation of the recent and promising ZeroMQ
technology in replacement to CORBA. We present the
prototype of a simple RPC built on top of ZeroMQ and
the performant Google Protocol Buffers serialization tool,
to which we add a remote method dispatch layer. The
final project will also provide an IDL compiler restricted
to a subset of the language so that only minor
modifications to our existing IDL interfaces and class
implementations will have to be made to replace the
communication layer in NOMAD.

INTRODUCTION
Nomad has been designed 10 years ago as a client

server application where the server is written in C++ to
have a direct access to the C driver layer and the main
client is written in Java to have a portable and reactive
GUI application. Some other client applications have been
developed and, among them, we can cite the Nomad Web
Spy and the Nomad Monitor [1]. At the time of the initial
design, CORBA [2] was the best middleware to provide
interoperability between a wide range of languages and
systems and it was logically chosen for the
communication between the server and the clients in
Nomad. The Nomad server currently is based on
omniORB and the clients on JacORB.

The CORBA standard offers lots of features and
specifies the implementation of an Object Request Broker
(ORB). The project was ambitious and enabled to write
distributed applications where network issues could be
“forgotten”. Indeed the programmer can manage CORBA
objects almost like normal objects and write complex
client server interactions. These advantages can become
disadvantages because this can increase the network
communications as the server can become a client and
vice versa. The CORBA component is a monolith which
offers so much possibilities that when a problem occurs, it
is difficult to know where to begin. From our own
experience we had trouble with the C++ binding. For
example we could not find any documentation on how to
ensure that a CORBA object was still alive at the end of a
client call. Moreover from the design point of view,
CORBA is intrusive as any object managed by the

CORBA framework must inherit a CORBA generated
class – stub for the client side, and skeleton for the server
side. This constraint does not help to design clear
applications where a large part of code can depend on
CORBA, although a better design is to restrict the use of
CORBA to the communication layer. Some other
shortcomings are exposed in Ref. [3].

In Nomad we need to have a strong relation between
the server and the GUI client. We have numerous IDL
operations defined in many files. On one hand, the client
to server operations mainly include the hierarchical data
model, e.g. the controllers and drivers hierarchy and the
composite control sequence building [1]. These request
messages must be synchronous as the client is expecting a
response result. On the other hand, the Nomad server to
GUI client operations mainly include the execution states
for the sequencer and the commands of the controllers
and drivers. They are called events and some of them
could be asynchronous but with reception guarantee. Only
a few of them could be asynchronous without reception
guarantee. Notice that a simplification of the CORBA
operations design could be considered. Indeed once the
CORBA architecture is set up, it is very easy to add a new
operation.

CORBA implementations are now declining and a
bunch of new technologies emerged in recent years as the
need for large distributed systems is increasing and
CORBA did not manage to impose its architecture.
Nomad contains many C++ and Java implementations of
abstract methods defined from IDL files. However the
Nomad application has not a large number of clients. In
that conditions, how can we replace CORBA in Nomad
with the minimum amount of work?

EXISTING SOLUTIONS
The existing middleware solutions can be classified

into message-oriented, data-oriented, service-oriented and
object-oriented. CORBA is an object-oriented
middleware. By simplifying, data-oriented and service-
oriented middlewares are built on top of a message layer
and object-oriented middlewares are built on top of a
service layer.

The closest solution to CORBA is Ice [4] developed by
Michi Henning, a CORBA expert who rewrote an ORB
implementation by taking into account all the drawbacks
of CORBA [5]. The Slice language is very close to
CORBA IDL which would imply a minimum code
porting. However Ice has still a monolith architecture,

*legoc@ill.fr

TUPPC042 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

654C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

does not seem to have a large community and it is not a
standard. Replacing CORBA by Ice would introduce a
dependency to a single company.

Currently there is no other object-oriented middleware
available. Other solutions are exposed in Ref. [3] among
which ZeroMQ [6] is considered the best. ZeroMQ has
been already chosen by CERN and ESRF for TANGO
[7]. ZeroMQ benefits from a large active community, it is
multi-language mainly based on a C library bound to
different languages. We can find the project jeroMQ [8]
that is the rewriting of the C library in Java. This project
is useful since some Java contexts do not permit the
binding to a C library (Java Web Start, Androïd, etc.).
Moreover ZeroMQ has good performances. In the
following, we will consider the use of ZeroMQ in
replacement of CORBA in Nomad.

PROTOTYPE SOLUTION
ZeroMQ provides an “intelligent” message layer but

cannot replace immediately CORBA in Nomad. One
solution would be to transform all the IDL operations into
ZeroMQ messages but the number of operations and the
amount of code to rewrite to define synchronous
messages discards this solution. CORBA standard is very
large and we only use a small part in Nomad. Thus we
can imagine to write a simple ORB based on ZeroMQ that
implements a restriction of the CORBA functionalities.
The restrictions include a subset of the CORBA IDL
language and a simple API to associate server objects to
client proxies. As a consequence we will be able to reuse
our class design and minimize the code porting.

Object-oriented services zRI

Marshalling/Unmarshalling Protocol Buffers

Message transport ZeroMQ

Figure 1: The ORB layers in zRI.

To realize the prototype we need a performant multi-
language marshalling/unmarshalling library that will be
hidden from the user. We can cite Message Pack [9], a
library based on binary JSON messages, Thrift [10] a
library provided by Facebook and Protocol Buffers [11] a
library from Google. By comparing the benchmarks [12],
we chose Protocol Buffers for the large community and
its performance. As the marshalling/unmarshalling
process will be hidden from the user, the lack of
readibility and extensibility cited as disadvantages [13]
are not a problem.To summarize, we define the prototype

project zRI (ZeroMQ Remote Invocation) that is the third
layer of a simple ORB (See Figure 1).

We write a simple object layer that is close to a service-
oriented solution – we do not allow the references to
objects in our restriction of the CORBA IDL language.
The project can be seen as the implementation of
synchronous typed messages and an automation of the
marshalling/unmarshalling code which can be very
verbose. Moreover it depends on relatively small
components that makes them easier to replace.

The project includes:

• zRIg : an IDL compiler (restricted);

• zRIcpp : the runtime library for C++;

• zRIj : the runtime library for Java.

The IDL compiler is designed to be extensible, so that
the zRI project may not be restricted to the ILL and could
be provided to the community as an open-source project.
We implement the prototype to test the viability of the
solution.

IMPLEMENTATION
In this section we will present the execution of a remote

method call in zRI and then present the compiler
implementation.

Execution
We take the minimal IDL interface A as example:

interface A {

double foo(in short a, in boolean b);

};

The compiler zRIg generates the client stub class A in
Java and the server skeleton class A (abstract) in C++ for
which we provide a simple implementation AImpl. Before
requesting any remote method call:

• the zRI server is started on the server side with
an address;

• the C++ AImpl object is bound to a name;

• the Java A stub object is resolved to the AImpl
object by its address and its name.

The Figure 2 shows the sequence diagram of the client
synchronous call of a A.foo.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC042

Experiment Control

ISBN 978-3-95450-139-7

655 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 2: Sequence diagram of a synchronous client call.

When invoking foo, the stub object A opens a socket of
type REQ (ZeroMQ type) and sends the serialization of a
RemoteMethodRequest (not shown) object that contains
the object name, the method name and the serialization of
a A_foo_Args object containing the arguments a and b.
The reception of the message awakes the server
RemoteMethodDispatcher object which processes the
request by forwarding the call to the real AImpl object
after having parsed the content of the message. Note that
a socket of type REP is open when the server starts. Then
the AImpl object parses the string arguments into an
A_foo_Args object, calls the real method AImpl::foo and
serializes the result with an A_foo_Result object. The
RemoteMethodDispatcher object then sends the result
message that is parsed by the client object A and returned
to the client.

Note that the implementation of the zRI server is not
complete, e.g. the process of request in parallel is not
implemented yet.

Compilation
The zRIg compiler written in Java generates the stub

and skeleton classes as well as the serialization helper
classes from the IDL file.

Figure 3: zRIg Compiler workflow for the generation of a
Java stub class.

Figure 3 shows an example of the workflow diagram.
First, the Abstract Syntax Tree (AST) is built with a
parser generated by ANTLR 3 [14] from a CORBA IDL

grammar that we found on the web site (slightly
modified). The AST is transformed into a Java data
structure listing the definitions of the file “A.idl”, that is
easier to manipulate for the verification and the
generation phases. The ANTLR parser checks the lexical
and syntaxic errors and we check the semantics errors
including name redefinitions, name ambiguities, etc.
From the definition data structure, we generate a
temporary Protocol Buffers file “A.proto” and “A.java”
for the stub class. Then we use the compiler protoc
provided by Protocol Buffers to compile “A.proto” and
generate the helper classes A_foo_Args and
A_foo_Result used by the class A to serialize the
arguments and parse the result of a method call.

Note that Protocol Buffers defined its own IDL
language called proto to describe the messages to
marshall and unmarshall. The proto language allows to
define message data structures that are composite and
typed. We defined a mapping between the IDL types and
the proto types so that we can generate the A_foo_Args
message with the arguments of foo as attributes, and the
A_foo_Result message with the result of foo as attribute.

The zRIg compiler was defined to be easily extended.
We based our generation of code on XML code templates
easy to modify rather than changing and recompiling Java
classes. We currently implemented the following CORBA
IDL features: modules, operations with basic types and
sequences, typedef. To replace CORBA in Nomad: the
following features are missing: struct, interface
inheritance, exceptions, preprocessor. New functionalities
should be implemented by extending the base class
Definition of the zRIg framework.

PERFORMANCE
In Nomad, data transfer can become a bottleneck as we

need to transfer from the server quite large acquisition
data arrays (> 1 Mo) to be rendered in the GUI at quite
high frequencies. We selected the ZeroMQ and Protocol
Buffers for their performance. To compare the zRI
performance with our current CORBA architecture
(omniORB 4.1.4 and JacORB 2.3.1) we defined a simple
IDL interface:

interface Sequence {

typedef sequence<double> dseq;

TUPPC042 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

656C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

dseq get(in long size);

};

We implemented Sequence in both CORBA and zRI so
that only a data transfer is made and we compared the
time of a client call for different message sizes. The client
and the server run on the same machine (Intel Xeon
2.40GHz, 4GB RAM, Linux Suse 11). We present the
resulting times in Figure 4.

Size

C
+

+
 copy

C
+

+
 serial.

P
rotobuf parsing

Java copy

0M
Q

 +
 zR

I internals

T
otal zR

I

JacO
R

B
 parsing

T
otal C

O
R

B
A

800 KB 0.5 0.5 5 1 3 10 2 5

2 MB 1.5 1.5 12 2 5 20 5 11

8 MB 6.5 7 45 6 10 75 20 45

80 MB 62 72 870 59 62 1125 250 550

Figure 4: Comparison of zRI with CORBA for different
array sizes. Time in ms.

The results show that CORBA is almost twice faster
than zRI until the size of 8 MB. In zRI, the bottleneck is
the Java unmarshalling that takes itself the total time of
CORBA. For 80 MB, the Java unmarshalling time is
increasing drastically. Note that Protocol Buffers was not
designed for large arrays. We also compared Protocol
Buffers unmarshalling performance with MessagePack
which confirmed to be even almost twice slower. The C+
+ copy and Java copy occur because the type of the
sequence of double in Protocol Buffers is different in zRI
C++ and zRI Java. However those results are satisfying
for the Nomad requirements.

CONCLUSION
The prototype of a simple ORB built upon ZeroMQ and

Protocol Buffers is a success and implementing the

required features for replacing CORBA in Nomad should
not be an issue. Some real tests will have to be performed.
CORBA and ZeroMQ can live together and we will first
replace a small part of the Nomad client server
communication by zRI.

The zRI project goes beyond the ILL and is a good
candidate for open-source release and be opened for other
people or organization who either want to replace
CORBA or implement new features. An ORB provides
interesting features, and it's not because CORBA is
declining that the ORB concept is obsolete.

REFERENCES
[1] P. Mutti et al., “Nomad – More than a Simple

Sequencer”, ICALEPCS'11, Grenoble, France.
[2] OMG CORBA: http://www.corba.org/

[3] A. Dworak et al. “Middleware trends and Market
Leaders 2011”, ICALEPCS'11, Grenoble, France.

[4] ZeroC Ice: http://www.zeroc.com/

[5] M. Henning, “The Rise and Fall of CORBA”,
http://queue.acm.org/detail.cfm?id=1142044, 2006

[6] iMatix ZeroMQ: http://www.zeromq.org/

[7] ESRF TANGO http://www.tango-controls.org/

[8] JeroMQ: https://github.com/zeromq/jeromq/

[9] MessagePack: http://www.msgpack.org/

[10] Apache Thrift: http://thrift.apache.org/

[11] Google Protocol Buffers
http://code.google.com/p/protobuf/

[12] Thrift Protobuf Compare:
http://code.google.com/p/thrift-protobuf-
compare/wiki/Benchmarking/

[13] U. Ismail, “A case against using Protobuf for
transport in a REST Services”:
http://techtraits.com/noproto/

[14] ANTLR: http://www.antlr.org/

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC042

Experiment Control

ISBN 978-3-95450-139-7

657 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

