Proceedings of ICALEPCS2013, San Francisco, CA, USA

TUPPCO030

SYSTEM RELATION MANAGEMENT AND STATUS TRACKING FOR
CERN ACCELERATOR SYSTEMS

M. Audrain, D. Csikos, K. Fuchsberger, J.C. Garnier, A.A. Gorzawski,
G. Horanyi, J. Suchowski, P.C. Turcu, M. Zerlauth, CERN, Geneva, Switzerland

Abstract

The Large Hadron Collider (LHC) at CERN requires
many systems to work together closely to allow reliable
operation and at the same time ensure that the required
protection systems function correctly when operating with
the large energies stored in the magnet system and parti-
cle beams. Some examples of systems are magnets, power
converters and the LHC quench protection system as well
as higher level systems like Java applications or server pro-
cesses. All of these systems have numerous and varied
kinds of links (dependencies) between each other. The
knowledge about the different dependencies are available
from different sources like layout databases, Java imports,
proprietary files etc. Retrieving consistent information is
difficult due to the lack of a unified approach to collecting
the relevant data. This paper describes a new approach to
establish a central server instance, which allows collect-
ing this information and providing it to different clients
used during commissioning and operation of the acceler-
ator. Furthermore, it explains future visions for such a sys-
tem, which includes additional layers for distributing sys-
tem information like operational status, issues or faults.

INTRODUCTION

The LHC is made of numerous software and hardware
systems. Dipole magnets drive the beam into a circular
path, while quadrupole magnets keep the beam focused.
An electrical circuit contains a chain of magnets and is
powered by a power converter. Magnets which store a
very high energy are monitored by dedicated machine pro-
tection systems, like the Quench Protection System (QPS)
controllers [1]. A QPS controller is intended to supervise
up to four resistive voltage detectors. Each detector is re-
lated to a different physical circuit which is powered by an
individual power converter.

The AccTesting [2] framework needs to know the re-
lation between circuits and QPS controllers in order to
schedule tests during LHC hardware commissioning cam-
paigns [3] optimally. For instance, it must not schedule
two tests in parallel on two circuits which are monitored by
the same QPS controller, otherwise it would not be able to
guarantee the diagnostic data consistency. Hence it needs
to know, for a given circuit, all the circuits to which it is
related, and through which QPS controller.

The AccTesting also needs to retrieve certain informa-
tion about a system: The test history through all the previ-
ous hardware commissioning campaigns, test parameters,
the current state of a system. All these information and

Data Management and Processing

their history are precious data to understand better the com-
plex systems around the LHC.

The problem is that there is not a single data source to
provide all the systems, their information and their rela-
tions. The software environment is made of multiple data
sources which provide partial information. The AccTest-
ing framework had to interface all the data sources provid-
ing partial information, using various different Application
Programming Interfaces (API), in order to rebuild the full
picture of the systems and their relations, as illustrated in
Figure 1.

.:l‘

Z

Software

®—©

Figure 1: The software needs to know the relation from A
to C, and it finds it by transitivity from two sources, first
learning the relation from A to B and then from B to C.

The AccTesting is only an example and many applica-
tions have to address the same issue. A system relation
management and status tracking framework was therefore
designed. We will refer to it as the system framework.
Its role is to retrieve all the records from all known data
sources. It then provides a consistent API to allow any
software to retrieve the systems, their relations and their
status.

The first Section presents the overview of the framework
and its usage. The second Section presents the architec-
ture designed to handle systems, their relations and their
attributes. The third Section presents the architecture of
the system, how it serves clients and how it retrieves data.
The fourth Section presents the investigations carried out
at CERN to provide dynamic information, particularly for
software components.

OVERVIEW

As explained before, the aim is to retrieve data from mul-
tiple data sources and to provide them in a consistent way
to any user. The system framework provides a simple Java
API so client applications can retrieve systems and their
relations easily.

To feed data into the framework, a provider API was put

ISBN 978-3-95450-139-7
619



TUPPC030

in place. Developers can design providers, based on any
data source, and plug them into the system framework as
illustrated by Figure 2. They can also define their own sys-
tems and relations.

Currently the system relation service is simply imple-
mented in a library which can be embedded in client appli-
cations. In the future the plan is to provide a central and
dependable service from which clients can access the in-
formation.

Clients, e.g. AccTesting
= ’i — =

System
Framework

/

System Providers:
- Circuits - Database

- Magnets - Runtime information
- - Java Code Analysis

Relation Providers:

Information Providers:
- Faults
- Issues

Figure 2: On top, the system framework serves multiple
clients, like the AccTesting framework. At a lower level,
the framework uses providers to retrieve information from
multiple sources. The design was made to allow developers
to add new providers easily.

SYSTEMS, RELATIONS, INFORMATION
AND ATTRIBUTES

A System represents basically any part of the entire
CERN accelerator complex. More generally everything is
a system. It can be a magnet, a power converter, a device
controller, a front-end-controller, a host or even a process.
From a software point of view, this is an interface that can
be implemented by developers who want to define their
own systems, as shown in Figure 3. Most of the hardware
systems which are used by the Machine Protection soft-
ware are already implemented, and developers started to
add other systems like hosts and processes.

The basic information about a system is the SystemKey,
which defines a unique way to identify the system across
multiple databases. This is the role of the implementation
to make sure that the system key will be unique and will
identify a same system across multiple data sources. For
example for most of the hardware systems, we use the type

ISBN 978-3-95450-139-7
620

Proceedings of ICALEPCS2013, San Francisco, CA, USA

of the system and the hash of its name, as names are unique
within a given system type. However, a process key will
have to use the process ID and the host IP address, as there
might be multiple processes with the same name on the
same host, and multiple processes with the same process
ID on multiple hosts.

<<System>> <<SystemKey>>

+getSystemAttributes()
:Set<SystemAttribute> N
+getSystemAttributes(SystemAttributeType)
:Set<SystemAttribute>

PaN

<<GenericSystem<K>>>
+getKey(): K
PaN

<<Circuit>>
+getCircuitType(): CircuitType
+getInterlockType(): InterlockType
AN

CircuitImpl CircuitKeyImpl
- ]

Figure 3: The System interface allows users to define their
own implementations, here is a Circuit. A System is com-
posed of a SystemKey which is also implemented by the
user. The SystemKey is what allows the application to iden-
tify the instances in a unique way in multiple databases.

System Attribute A system has attributes. They are
characteristics of a system. Attributes are somehow static
and almost never change. The perfect example in the LHC
accelerator domain is the physical location of a magnet.
For most of the LHC life time, the magnet will have the
same location.

<<SystemAttribute>> <<SystemAttributeType>>
+getSystemAttributeType() +isExclusive():boolean
:SystemAttributeType AN
+getName():String :
A i
<<enumeration>>
CircuitAttributeType
" - +CIRCUIT_TYPE
<<CircuitType>>
+SUBSECTOR

+TEST_PARAMETER

CircuitTypeImpl

Figure 4: The System Attribute hierarchy is simple. The
interface forces one to provide a name and a type to the
attribute, then the implementations are free to add any in-
formation they want.

Data Management and Processing



Proceedings of ICALEPCS2013, San Francisco, CA, USA

System Information defines the runtime information
about a system, such as its actual status, parameters, issues
or non conformities. A system information basically repre-
sents information about the system which does not charac-
terize the system itself, unlike attributes. The number and
type of information may vary depending on the system, if
it is hardware or software.

A System Relation defines a relation between two
systems. The interface SystemRelation offers two meth-
ods to retrieve the source and the target of a relation. This
comes from the way data is stored in system and relation
data sources, i.e. one looks up a target system from a source
system. Relations can be extended to more complex defi-
nitions, like bidirectional, dependence, composition, con-
nection, etc. Developers can implement their own relation
to add them into the system framework. Figure 5 shows
the hierarchy which implements a simple bidirectional re-
lation.

<<SystemRelation>>
+getSource():System
+getTarget():System

<<InvertibleSystemRelation>>

+invert()
AN

UnspecifiedSystemRelation

Figure 5: A SystemRelation is a simple interface which pro-
vides a way to retrieve the source and the target of the rela-
tion. A specific interface defines a simple bidirectional re-
lation, its implementation will basically be able to reverse
the source and the target of the relation.

COLLECTING, CACHING AND SERVING

The system framework retrieves systems, relations, in-
formation and attributes from multiple data sources in a
unified and consistent way. Large scale applications need
to access only one data source now, the system relation
framework. The framework is layered as shown in Fig-
ure 6. Providers implement data collection, managers use
these providers to retrieve data and cache them so that
clients can retrieve them using the controllers.

Architecture From our experience, systems and rela-
tions were loaded from multiple text files, e.g. CSV, and
from a couple of databases. Thus we decided to use loose
coupling in order to define multiple providers. Providers
can then be seen as plug-ins that any developer could
implement. The managers are then able to use all the
providers in a consistent way and get all the data. The

Data Management and Processing

TUPPCO030

managers will just handle objects through the interfaces
presented in the class diagrams of Figures 3, 4, and 5.
Meanwhile, the users know the types of their systems and
relations. So they are able to retrieve data from the con-
trollers with the correct type in a safe way thanks to Java
Generics [4].

Collaborators already implemented their own modules,
for instance to provide hosts and processes. In order to
contribute, they have to implement their own systems, re-
lations, information and attributes providers, and their own
domain object if they are not already defined.

Behaviour At start-up, the framework loads all the
systems, relations and attributes from the providers that are
plugged in. It then stores the data in a multi-map [5] which
represents an unlabelled directed graph: keys are mapped
to a set of values. The multi-map is synchronized in or-
der to serve multiple clients concurrently. Then every sub-
sequent request from clients will hit the cache. A read-
through caching still needs to be implemented to take into
consideration data source updates occurring during the ser-
vice uptime.

In order to integrate a new provider the service has to be
redeployed and restarted. To overcome this, dynamic class
loading is under investigation. Developers would be able
to inject new classes directly into the server. The aim is to
declare the server a critical service and therefore provide
high availability.

— Controllers

Systems Controller

| Core

System Relations Controller

Systems Manager

Lonvldevs _—

Systems Providers

System Informations Controller

System Relations Manager

Systems Relation Providers

Figure 6: The system relation application is divided in 3
layers. Controllers allow users to get systems, relations or
information. The core layer contains managers which per-
form caching. The lower layer consists of plug-in providers
that are used by the managers to retrieve data. The System
Information vertical slice is not implemented yet.

VOLATILE DATA COLLECTION

Investigations The information about volatile systems
like processes will be based on data sources very differ-
ent from databases. Running processes will be provided by
DIAMON [6], while stopped processes will be provided
by log files and Splunk [7]. The network hardware connec-
tions will be provided by the central IT database, while the

ISBN 978-3-95450-139-7
621



TUPPC030

interprocess communication will be provided by the CERN
Control Middleware [8]. JIRA issues [9], and more gener-
ally all the CERN accelerator development and build envi-
ronment will be used to provide software system informa-
tion and attributes.

In addition, volatile information calls for date and his-
tory management, pulling or pushing of data into the frame-
work, and challenging caching strategies in order to ensure
a high level of dependability and accurate answers to client
requests. This is currently under investigation.

Complementary study This project is carried out in
collaboration with the accelerator controls group, with the
same requirements, but with a slightly different environ-
ment to start with. They use a complementary approach
as their environment is mainly concerned by managing dy-
namic information, so they investigated further this prob-
lematic.

The alternative solution depends on code generation and
metamodelling (describing a general and object-oriented
entity-relationship (E-R) model, similar to to the interfaces
presented in Section 1). The domain model of the system
is defined with an instance model, which is loaded and pro-
cessed by a Java code generator (implemented with Ac-
celeo [10]). The models are defined with Eclipse Mod-
elling Framework [11], but the generated code consists of
Plain Old Java Objects (POJO), without any runtime de-
pendencies. With the usage of a domain model and a code
generator, not just the domain objects, but a strongly typed
data access layer (DAL) and a remote access layer is gen-
erated fully automatically. The DAL uses a Neo4j [12]
graph database back-end, which provides an efficient way
for storing and accessing E-R models. The remote access
layer is used for client-side applications (mainly graph-
based data visualizations).

The data collection uses a similar loosely coupled data
provider architecture. The providers will be executed by
a central scheduler component. Three customisable op-
tions are available for defining the execution time for the
providers:

e Timer-based triggering, where the provider can spec-
ify the frequency of execution.

e Event-based triggering, where the provider can spec-
ify, that if a given entity (or a set of entities) was added
to the system (where entity is basically a System from
Section 1), then the provider should be executed.

e On-demand triggers, where the clients can send re-
quest to the system to update one specific element in
the database.

These options ensure that all kind of providers can be de-
fined and added to the system, providing an efficient and
easily extensible system.

ISBN 978-3-95450-139-7
622

Proceedings of ICALEPCS2013, San Francisco, CA, USA

CONCLUSION

Retrieving information from systems and their relations
is a very common need at CERN. This paper describes the
approach to a generic solution in the machine protection
group, with the effort to bring a single solution fulfilling
the needs of the whole CERN accelerator environment.

This solution can be seen as a proxy that interfaces all
the possible system and relation data sources to provide a
unified and consistent way to retrieve information from all
these sources. It is able to store any information as it can
be extended at will. Investigations are currently being per-
formed in order to record the ephemeral information from
the software world, to store a history in order to perform
status tracking, and to be able to collect data dynamically.

This solution currently works embedded as a module in
the applications which want to use it, and it will soon be
released as a server as it becomes a more and more central
system in machine protection software.

In parallel, the accelerator controls group investigated a
different approach based on metamodelling, code genera-
tion and graph database persistence, in order to meet their
strong requirement in handling ephemeral relations.

The next step will be to review the two existing solutions
and converge to a single solution.

REFERENCES

[1] R.Denz et al., “Performance of the Protection System
for Superconducting Circuits during LHC Operation”,
TUPSO071, proc. of IPAC 2011, San Sebastian, Spain.

[2] D.Anderson et al., “The AccTesting Framework: An Exten-
sible Framework for Accelerator Commissioning and Sys-
tematic Testing”, THPPCO071, proc. of ICALEPCS 2013,
San Francisco, CA, USA.

[3] M. Solfaroli Camillocci et al., “Commissioning of the LHC
Magnet Powering System in 20097, MOPEBO045, proc. of
IPAC 2010, Kyoto, Japan.

[4] James Gosling, Bill Joy, Guy Steele, Gilad Bracha , “Java
Language Specification, Third Edition”, Prentice Hall PTR
2005.

[5] https://code.google.com/p/guava-
libraries/wiki/NewCollectionTypesExplained

[6] M.Buttner et al., “Diagnostic and Monitoring CERN Ac-
celerator Controls Infrastructure : The DIAMON Project
First Deployment in Operation”, proc. of ICALEPCS 2009,
Kobe, Japan.

[7] http://www.splunk.com/

[8] A.Dworak et al., “The new CERN Controls Middleware”,
proc. of CHEP 2012, New-York, NY, USA.

[9] https://www.atlassian.com/software/jira
[10] http://wiki.eclipse.org/Acceleo
[11] http://www.eclipse.org/modeling/emf/
[12] http://www.neo4j.org/

Data Management and Processing



