
DEVELOPMENT OF J-PARC TIME-SERIES DATA ARCHIVER USING
DISTRIBUTED DATABASE SYSTEM

N. Kikuzawa#, A. Yoshii, H. Ikeda, Y. Kato, J-PARC, Tokai-mura, Naka-gun, Ibaraki, Japan

Abstract
J-PARC (Japan Proton Accelerator Research Complex)

consists of many equipments. In Linac and 3 GeV rapid
cycling synchrotron ring (RCS), date of about 64,000
EPICS records have been collected for control of these
equipments. Data volume is about 2 TB in every year, and
the stored total data volume is about 10 TB. The data have
been being stored by a Relational Database (RDB) system
using PostgreSQL since 2006, but it is not enough in
availability, performance, and flexibility for increasing
data volume. The new database system is required to have
high availability, high performance, and high flexibility of
storage expansion.

The purpose of our work is to examine the next-
generation archive system using Apache Hadoop of a
distributed processing framework and Apache HBase of a
distributed database. The purpose of this paper is to report
the present status of this archive system and future plan.

INTRODUCTION
 J-PARC is controlled with a lot of equipment, and we

have been archiving time series operation data of about
64,000 EPICS records in Linac and RCS [1] since 2006.
PostgreSQL has been used in the present data archiving
system, but it has some problems of capacity, extensibility,
data migration and so on. In order to deal with the
problem, we proposed a next-generation archive system
using Apache Hadoop [2] of a distributed processing
framework and Apache HBase [3] of a distributed
database.

The Hadoop has become a widely used open source
cloud computing framework for large scale data
processing. The Hadoop core is a file system, called
HDFS (Hadoop Distributed File System) and the HBase
is working on it. The HBase is a distributed, scalable Big
Data store on clusters built with commodity hardware.
The Hadoop and the HBase are scale-out type architecture,
and we can extend a system dynamically by adding nodes
if needed. We can therefore achieve efficient investment.
Moreover, since the Hadoop and the HBase are designed
based on the assumption of frequent node failures, they
have the tolerance to them and are easy to restore. The
HBase is a type of "NoSQL" database and is optimized
for data storing and acquisition by restricting modification
of data, transaction, and table combination, as compared
with an RDB. The HBase is suitable for the use of write-
once read-many.

We consider that this database is the best for the time
series data archiving system. Our purpose is to evaluate
the performances of the Hadoop and HBase system in
comparison with those of the present PostgreSQL system
implementation.

DATABASE SYSTEM CONFIGURATION
Hardware Configuration

The Hadoop and HBase cluster has two types of
machines: masters (NameNode, JobTracker,
HBaseMaster, and Zookeeper) and slaves (DataNodes,
TaskTrackers, and RegionServers). About 50 TB of the
HDFS is built using nine slave nodes with commodity
servers, and the HBase is working on it. Each slave node
contains four 2 TB local hard disk storages constituted in

Table 1: Spec of Hadoop and HBase System

Role Composition

Master
Node
(Primary)

DELL PowerEdge R610
CPU: Intel Xeon E5620 (4Core 2.4GHz)
MEM: 24GB (8GB x 3, 1333MHz, DDR3)
HDD: 600GB SAS 10 krpm x 4 (RAID10)

Master
Node
(Secondary)

DELL PowerEdge R200
CPU: Intel Xeon X3210 (4Core 2.13GHz)
MEM: 8GB (2GB x 4, DDR2)
HDD: 160GB SATA 7200rpm x 1

Slave
Node

DELL PowerEdge R410
CPU: Intel Xeon E5620 (4Core 2.4GHz)
MEM: 24GB (8GB x3, 1333MHz, DDR3)
HDD: 2TB SAS 7200rpm x 4 (RAID5)

Software OS: CentOS6.3 (Japanese)
Java: JDK 1.6.0_45
Hadoop: 1.0.4
HBase: 0.94.5
Heartbeat: 3.0.7
Pacemaker: 1.0.12
DRBD: 8.4.1
Ganglia: 3.4.0

#kikuzawa.nobuhiro@jaea.go.jp

Figure 1: The test system of the archive system.

TUPPC017 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

584C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

RAID 5. Each server is interconnected using Gigabit
Ethernet (GbE). Figure 1 shows the system configuration.
According to our experience, HBase requires much
memory; although the slave nodes started operation with
12 GB memory, which had to be extended to 24 GB.
Table 1 shows the spec of the Hadoop and HBase system.

High Availability Cluster
It is mentioned that a master node is SPOF (single point

of failure) as a problem of the Hadoop and the HBase. So,
we make two servers into HA (High Availability) cluster
structure using Heartbeat and Pacemaker [4], and raise
system availability. Moreover, important metadata for
data management is protected by the data replication
between two servers using DRBD (Distributed Replicated
Block Device). The Heartbeat needs to be combined with
a Cluster Resource Manager (CRM) to start/stop services
for that cluster. The Heartbeat controls the master process
of the Hadoop and the HBase, and the master of DRBD.
The Pacemaker is the preferred CRM for the Heartbeat.

We set up a Virtual IP (VIP) address using the
Heartbeat and the Pacemaker, and then associate it with
the active master node. If the active master node has
crashed, the Heartbeat and the Pacemaker will detect it
and assign the VIP address to the standby master node,
and then start the NameNode there. Alive monitoring of
each service is performed for every 1 minute, and failover
to the secondary server is performed when a timeout
occur of the services. When it is judged that the Heartbeat
itself fell into the down state, the failed node is removed
from the cluster using STONITH (Shoot The Other Node
In The Head).

Since it is necessary to perform starting of the HBase
system service after the initialization processing of the
Hadoop system service start-up is completed, the time lag
of 180 seconds has been prepared for starting of the
Hadoop system service. It will take about 5 minutes for
failover and failback in our system.

TABLE STRUCTURE AND
PERFORMANCE TEST

Table Structure
In order to register many data with the present

PostgreSQL database system with low write processing
load, the large number of the acquired data is divided into
some groups and gathered into a row for each group. In
this case, the system load at the data registration is low,
on the other hand, data retrieval speed become slow,
because it is necessary to extract required data from the
combined data.

The HBase is a type of column-oriented database, a
simple structure of key-value is suitable. It is possible to
have huge size tables as compared with the conventional
database system. Then schema design in the column-
oriented database is very different from schema design in
an RDBMS (Relational Database Management System).

We have so far carried out examinations about table
structure [5]. In the HBase, since data is stored in
ascending order of row (primary key), if all row keys start
with the same value and monotonically increasing like
timestamp, they will be written only in the same region
and thus the same server [6], which results in slow writing
speed. In order to avoid this problem, the EPICS record
name of the data is attached to the head of the primary
key.

Figure 2 shows the image of the data table structure.
Since the data are located in a line by the time series for
every EPICS record, this structure can achieve efficient
retrieving the time series data. Moreover, process of data
writing is naturally distributed because the postscript
place of new data is distributed (the node holding the data
of a postscript place is distributed).

About 6,500 polling type data in a cycle of 1-60
seconds and about 13,000 the event type data in Linac are
collected, and it can be archiving stably.

Figure 2: Image of data table structure.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC017

Data Management and Processing

ISBN 978-3-95450-139-7

585 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Speed of Data Retrieval
Several benchmarks have been carried out to evaluate

the performance. The past data was copied to the HBase
and retrieval speed of the HBase system was compared
with that of the present system. Table 2 shows spec of the
present system. The present system has two storages; one
is the high spec storage of StorNext [7] for data input,
another is lower spec storage for data retrieving.

The data copied to the HBase was Linac data for one
year, and volume of the data was about 1 TB. Because of
the high speed processing and reasonable compression
rate, we chose Snappy [8] as compression/decompression
library.

We carried out a benchmark test on the PostgreSQL
and the HBase system. The time taken to retrieve the data
of 5 days of Low Level RF (LLRF) and Ion Source (IS)
are shown in Figure 3. About retrieving of the IS data,
since the number of the EPICS records in the IS group is
45 and there is a small number of data in a row, there is
almost no difference in retrieving time. On the other hand,

retrieving time has a big difference about LLRF data
because the number of the EPICS records in the LLRF
group is 1846, then extracting the required data took
much time. About the difference between the PostgreSQL
systems, it originates from the difference of their storage
performances. Retrieving time of the HBase system is
shortened to about 1/5 as compared with the PostgreSQL
system.

Future Plan
We will have to develop applications corresponding to

the HBase for the system operation. Since it is necessary
to use Java API fundamentally to cooperate with the
HBase, it is thought that much time is required for porting
the applications developed with other development
languages. To reduce the software transplantation work,
we are also considering accessing through gateway API
like Thrift, REST, and Avro, and using of JNI (Java
Native Interface).

CONCLUSION
We proposed the next-generation archive system using

the Apache Hadoop of the distributed processing
framework and the Apache HBase of distributed database.
The demonstration system of the archive system using the
Hadoop and the HBase was built with commodity servers.
About 50 TB of the HDFS is built using nine slave nodes,
and HBase is working on it. About 6,500 polling type
data in a cycle of 1-60 seconds and about 13,000 the
event type data in Linac has been collected stably under a
test operation for 3 months. Moreover, as for the data
retrieval of large group data, response time is shortened to
about 1/5 as compared with the present PostgreSQL
system. From the benchmark test results, we conclude
that the new archiving system using the Hadoop and the
HBase is suitable for the time series data archiving.

REFERENCES
[1] S. Fukuta, et al., “Development Status of Database

for J-PARC RCS Control System (1)”, Proceedings
of the 4th Annual Meeting of Particle Accelerator
Society of Japan, August 2007. [in Japanese]

[2] http://hadoop.apache.org/
[3] http://hbase.apache.org/
[4] http://www.linux-ha.org/wiki/Heartbeat
[5] A. Yoshii et al., “J-PARC operation data archiving

using Hadoop and HBase” Proceedings of the 9th
Annual Meeting of Particle Accelerator Society of
Japan. [in Japanese]

[6] Apache HBase Reference Guide
(http://hbase.apache.org/book.html)

[7] http://cn.teldevice.co.jp/product/detail/stornextt
[8] http://code.google.com/p/snappy/

Table 2: Spec of PostgreSQL System

Role Composition

for Data
input

DELL PowerEdge R200
CPU: Intel Xeon X3210 (4Core 2.13GHz)
MEM: 8GB (2GB x 4, DDR2)
Internal HDD: 160GB SATA
HDD for Storing: 10TB (External file server
storage is shared using “StorNext” in 10Gb
network.)

for Data
retrieving

DELL PowerEdge 860
CPU: Intel Xeon 3060 (2Core 2.4GHz)
MEM: 4GB (2GB x 2, DDR2)
Internal HDD: 250GB SATA
HDD for Storing: 4TB (1TB x 4, Using external
disk of USB connection)

Figure 3: Data retrieval performance comparison.

TUPPC017 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

586C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

