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Abstract 
!CHAOS is an INFN project aimed at the definition of a 

new control system standard for large experimental 
apparatus and particle accelerators based on innovative 
communication framework and control services concepts. 
!CHAOS has been developed to address the challenging 
requirements in terms of data throughput of the new 
accelerators under study at INFN. One of the main 
components of the !CHAOS framework is the historical 
engine (HST Engine), a cloud-like environment optimized 
for the fast storage of large amount of data produced by 
the control system’s devices and services (I/O channels, 
alerts, commands, events, etc.), each with its own storage 
and aging rule. The HST subsystem is designed to be 
highly customizable, such to adapt to any desirable data 
storage technologies, database architecture, or indexing 
strategy and fully scalable in each part. The architecture 
of HST Engine and the results of preliminary tests for the 
evaluation of its performance are presented in this paper. 

THE !CHAOS FRAMEWORK 
The !CHAOS framework has been designed after an in-

depth evaluation of the new software technologies for 
data transfer and data storage emerging from the 
development of high-performance Internet services, such 
as the non-relational databases (NRDB) and the 
distributed caching system (DCS). Both are designed for a 
high degree of horizontal scaling that allows the insertion 
and retrieval of the data at the highest possible 
throughput, limited only by the saturation of either the 
available bandwidth or the network connections of the 
subsystem. 

While the NRDB logics and techniques are used to 
implement the indexes management and the fast data 
retrieval the DCS is used to provide the “live data 
sharing”, a scalable service for sharing the real-time 
device data. This software provides in-memory key/value 
storage and permits fast accesses to the same key/value by 
many concurrent clients. This caching layer avoids 
overloading the front-end controller with multiple reading 
accesses from clients that need to fetch data of a device. 

These two software technologies represent the core 
components in the design of the new control system 
named !CHAOS [1, 2, 3]. 

In the !CHAOS architecture, the Front End Controllers 
(FEC) push acquired I/O channels and alarms data into 
both live and history data cloud (DC), which means that 

data collection mechanism is inherently included in the 
!CHAOS communication layer. User interface 
applications, feedbacks or measurement algorithms can 
receive hardware data from the DC by issuing a “get” 
command or by registering to the push data services of the 
DC. The use of “get” command permits to regulate the 
effective refresh rate needed by every node, the push 
service instead, forwards the data at the same rate as it is 
pushed into the DC from the FEC.  

 

Figure 1: Data exchange between components by means 
of !CHAOS Data Cloud. 

The data payload sent by the front-end controllers to the 
DC is serialized according to the BSON specifications [4]. 
By construction, the formatting structure of the serialized 
data, its length and the offset of each value within the 
string do not change if only the data values are changed. 
By taking advantage of these features, we can decide to 
update either the entire payload (if needed) or just a part 
of it. This permits to scale down the bandwidth 
requirements for updating, at a given refresh rate, the 
device state into the DC.  

All others parameters of !CHAOS services and 
controlled devices such as data refresh rates, as well as 
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other meta-data, configurations, commands, data syntax 
and semantic etc. are managed by the Meta-Data Server 
(MDS). It manages FECs registration at start-up and later 
provides directory services to clients that need, for 
instance, to locate the DCS server for pushing its data or a 
FEC’s IP for sending RPC commands. Both static and 
dynamic configuration data of all !CHAOS services and 
nodes are managed by this central repository. The MDS 
has an important role also in the management of the 
access to the Storage subsystem: it stores the logic and 
data used by the FECs and user interfaces to identify the 
appropriate access point to the Cloud. Thanks to this 
information a first level load balancing is already 
achieved before accessing the Data Cloud.  

!CHAOS STORAGE SUBSYSTEM 
In !CHAOS the data storage  is provided by the service 

called History (HST) Engine. Its design (timed data 
oriented), will give !CHAOS an important technology 
advantage, in terms of performance,  scalability and 
flexibility, against the most popular DAQ standards for 
controls. The main ideas at the base of the data acquisition 
process are the following: a distributed file system is used 
to store data produced by machine operations while a 
KVDB manages the indexes structure. At the moment, 
candidate technologies for these services are respectively 
Hadoop [5] and MongoDB [6] that we choose because of 
the large users community and the abundance of use cases 
that we used as references. The functionalities of the 
!CHAOS HST Engine are allocated into three dedicated 
components, or nodes, namely the !CHAOS Query 
Language (CQL) Proxy, the Indexer and the Storage 
Manager. 

 This document focuses on the flow of the data in the 
storage operation. Figure 2 shows the role of CQL Proxy 
and Storage Manager in the data acquisition and 
organization. As soon as the data has been organized it 
will be more easily indexed for be made available. Every 
CQL proxy works on its personal space on the cache area 
and the Collector processes (a part of storage manager), 
instead, are working on all of the cache areas. 

 

Figure 2: The !CHAOS multi-write concept. 

 
Staging the Data 

A Front End Controller, i.e. a !CHAOS Control Unit 
(CU), starts the writing process by pushing a dataset to 
one of the storage subsystem CQL Proxies. The CU 
already knows which CQL Proxy is better to contact 

because during the initialization of the system (or the boot 
of the device) an algorithm tries to allocate at the best the 
resources of the whole Storage system. By checking the 
medium data-pack size of the devices, and its pushing 
rate, the registered CQL Proxies are “allocated” to the 
devices in order to load balance the network infrastructure 
and the total computing power. This technique allows 
implementing an inherited hot swap in case of proxy 
down time because the users of the proxies (Data 
producers and consumers) already know the full list of 
accessible access point if their main one goes down. The 
CQL Proxy plays the role of an access point to the storage 
subsystem, hiding all the complexity of data storage 
procedures to the user. Upon receiving the package, e.g. a 
serialized device’s dataset, the caching related logic inside 
the access point starts the data flow inside the Storage 
infrastructure. To ensure multi-write capabilities to the 
entire system we implemented a Cache layer such that all 
the packets received from clients (e.g. FEC) are stored by 
proxies in a common area (2) structured as the following. 
For each CQL Proxy a logical path is created in the 
distributed FS. To improve the performance of the system 
each proxy can allocate a pool of threads with the only 
task of getting the packets received by the proxy and start 
the allocation inside the file system. Each thread will 
fetch the data packets from the proxy regardless the 
device that produced them, starting to write them in files 
inside the path associated to the Proxy. The data pack 
wrote by a thread is stored into a private cache chunk 
(CC). Once a CC is no more valid (in terms of space or 
time elapsed), it will be available for the next phase 
described below.  

Moving the Data to Device Logical File (DLF) 
This phase consists of reading a closed cache chunk, 

read every packet and write it in the Logical File for the 
corresponding device. A specific process, contained into 
the Storage Manager, called “Collector” achieves this 
task. Every Collector process has a pool of thread and 
each one of these scans the cache directory to find a cache 
chunk to be processed. The selected cache chunk will be a 
closed one by the action of the proxy and not yet selected 
by other thread or other collector processes. 

The selected chunk will be read pack by pack. In every 
pack, it will be found the “device id” that has generated 
the data then it will be moved to the device logical file. 
Current collector thread has its own LogicalFileWriter, 
allowing having one logical file chunk for thread. Only 
one thread writes on a single Logical File Chunk, the 
same technic used by the proxies. When all the packets 
into the cache chunk are read, the chunk is deleted. 

This method allows improving the input performance of 
the system by increasing the number of proxies writing 
concurrently to the cache. Clearly, it is necessary to 
introduce appropriate strategies to allow packets 
reordering inside the file system such that each logical 
file, associated to a data producer, is chronologically 
ordered at any time.  

Proxy_n Collector_n

Proxy_1 Collector_1

Device_2 DLF

Device 1
Device_1 DLF

Device 2

Virtual File System
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Chunk Fusion of the Logical File (LF) 
After the “Moving” phase (Figure 3), every chunk of the 

logical file will be ordered in time (every data packet has 
timestamp >= than the previous one). Anyway two or 
more LF chunks can be overlapped in time (OLFC – 
Overlapped Logical File Chunk, a side effect of the fast 
moving phase). These overlapped chunks are reorganized 
by another process called “Fuser” (also contained into the 
Storage Manager). Every DP of every chunk are “fused” 
in a unique chunk that contains DP of every OLFC time 
ordered. If the cache subsystem, in a fixed point in time, 
receives an “old” packet, the fuser ensures the proper 
chronological order of packets inside the device’s logical 
files, by applying another merge operation on the right 
chunks of the Logical File. After that system updates, for 
each device, the timestamp of the newest packet 
effectively stored in the file system, providing the data 
consumers with quasi-real time information about the 
packets effectively stored inside the Cloud.  

 

Figure 3: The “Chunk Fusion” logic. 

Both the cache chunk and the device logical files are 
stored inside a distributed file system. Hadoop, our 
current best candidate, is a distributed file system that 
provides high throughput access to data, by automatically 
replicating it in the other servers of the cluster ensuring a 
full redundancy of the system. Once the data has been 
stored, the CQL Proxy informs the pool of Indexer nodes 
about the new written chunk and the first available 
Indexer appends the task to its queue. When processing 
the chunk, the Indexer first reads the packet (i.e. the 
dataset), analyzes it and, according to the indexing rules, 

updates the corresponding indexes. The default indexing 
strategy will be by chronological order, i.e. based on the 
timestamp and bunch/packet number within timestamp 
intervals. The indexing procedure allows a faster retrieve 
of the stored data by providing two different Indexes, the 
Time Machine Index (TMI) and the Value Based Index 
(VBI). The TMI is the default index in !CHAOS, because 
all the stored data is ordered according to a continuous 
timeline such that the timestamp is the primary key for all 
the data fetched by a single device. The TMI is intended 
as multilevel such to allow choosing the desired 
granularity for every query forwarded by the proxies. The 
second index, based on the values of the data stored, will 
be available only on demand allowing the retrieval of 
particular data patterns. 

Storage test 

Figure 4: The output of the staging and moving tests, 
showing the MBs produced, in cache and stored in the FS. 

It’s worth stressing that the solution we have just 
described allows increasing any of the system’s 
performance independently by scaling selectively its 
components. A faster and higher data throughput from 
front-end controllers, for instance, can be achieved by 
increasing the number of proxies writing concurrently to 
the cache. On the other hand the data throughput between 
caches and device’s logical files can be increased by 
growing the number of queues’ managers checking the 
packets acquired and the indexing procedure can be 
improved by increasing the number of indexer nodes. 

The components described so far, related to the staging 
and moving mechanism, have been tested off-line by 
using a software simulation of these two phases. The 
fusing phase has been removed from the numeric tests 
because is not fundamental for the data acquisition 
process: it is used once the data is already safe on the file 
system. The tests have been run on a mid level Mac Pro 

Fuser

Device_1 DLF

chunk 1

chunk 2

chunk n

Device_1 DLF

chunk n

time

T - start

merged (cunk 1 and 2)
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with two 2,8Ghz Quad-Core Intel Xeon, 18GB of DDR2 
RAM, and a SATA2 SSD hard disk. The graph shown 
here (fig. 4) is obtained by using two Producer processes 
simulating ten devices running with 50 threads each, and 
a single consumer process running on five threads. The 
average data produced by the simulated devices is 3,5 
MB/s simulating 515 channels pushing data packets of 68 
B at 100Hz. The test environment is like a worst-case 
scenario for this algorithm, because it cannot gain 
performance by a distributed file system and a multitude 
of proxy machines. In fact the data rates obtained can 
grow almost linearly by increasing the number of proxy 
machines and using a more appropriate file system. The 
graph in figure 4 shows the three fundamentals 
measurement in the caching system: the data produced by 
the devices (in red), the data actually in the cache files (in 
blue) and the data actually stored inside the device logical 
files (in green). More intensive tests will be run in the 
next months on the other parts of the storage system now 
under development. 

 

Figure 4: The !CHAOS Storage Infrastructure event list. 

ACKNOWLEDGMENTS 
The work is partially supported by FP7 Research 
Infrastructures project AIDA, grant agreement no. 
262025. 

REFERENCES 
[1]   http://chaos.infn.it 
[2]  L. Catani et.al.,  “Introducing a new paradigm for 

accelerators and large experimental apparatus control 
systems” , Phys. Rev. ST Accel. Beams 15, 112804 
(2012). 

[3] L. Foggetta et.al., “Progresses on !CHAOS 
development”, Proceedings of IPAC2012, New 
Orleans US, http://www.JACoW.org 

[4] http://bsonspec.org 
[5] http://hadoop.apache.org 
[6] http://www.mongodb.org 

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC011

Data Management and Processing

ISBN 978-3-95450-139-7

573 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


