

DEVELOPMENT OF A SCALABLE AND FLEXIBLE DATA LOGGING

SYSTEM USING NOSQL DATABASES

M. Kago
#
, A. Yamashita, JASRI/Spring-8, Hyogo, Japan

Abstract
We have developed a scalable and flexible data logging

system for SPring-8 control. The current data logging

system, powered by a relational database management

system (RDBMS), has been storing log data for sixteen

years. With the experience, we recognized the lack of

RDBMS flexibility with respect to data logging such as

the lack of adaptability in data format and acquisition

cycle, the complexity of the data management, and the

lack of horizontal scalability. To solve this problem, we

designed a new framework. Two NoSQL databases, Redis

and Apache Cassandra, were adopted to store log data.

ZeroMQ messages packed by MessagePack were

employed for communication. The prototype of the new

system showed high performance and reliability. In this

paper, we discuss its requirements and structure, the

results of performance evaluations and its current status.

INTRODUCTION

The SPring-8 control system adopts the MADOCA [1]

framework developed in 1995. A relational database

management system (RDBMS) [2] is one of the features

of MADOCA. Device information, operation parameters,

and log data are stored in a single RDBMS. This system

has supported the stable operation and development of

SPring-8.

However, in light of the new requirements resulting

from the recent improvement and future plans of the

accelerator, this system will not have the adequate

performance, capacity, or extendibility. In accelerator

beam diagnostics, handling large volume data such as

wave forms and image data has become a common task.

In addition, there is a need for data acquisition with a

shorter sampling cycle (< 10 Hz). These changes require

the data logging system to increase writing performance

and to handle large-volume data, but it is not easy to

extend the system for the following reasons.

• The RDBMS has no horizontal scalability. The

advantages of the RDBMS, such as joining tables

and securing ACID [3], become bottlenecks when

scaled out. The general method for improving server

performance is to change to a high-spec server, but

hardware costs are continuously increasing.

• The data management is complex. To improve

writing performance in MADOCA, a number of log

data are placed on one row to reduce the number of

SQL statements needed when they are stored in

RDBMS. When new data are registered on the

RDBMS, a new table has to be created.

• The data acquisition has no flexibility. The polling

system of the server-client model uses tight coupled

ONC-RPC and is highly interdependent. Therefore,

the data acquisition is limited by the OS and

language environments.

To solve these problems and contribute to the further

development of SPring-8, we developed a new data

logging system as a part of the MADOCA II project [4].

The design concepts of the new system are as follows:

• Database and data acquisition need to be scalable

such that data volume can be increased and

performance can be improved at a low cost.

• It should be easy to migrate from the current system.

The MADOCA manages data with human readable

names such as “sr_mag_ps_b/current_dac.” The new

system will adopt the same methods.

• The new system should be highly reliable without an

SPOF (single point of failure).

• Users without any knowledge of databases should be

able to easily start collecting data.

• The RDBMS will be used conventionally for static

information such as device information and

operation parameters.

DATABASE SELECTION

We designed a storage system that consists of a

database for the perpetual archive and a database for the

real time data cache. The permanent storage has to be able

to handle large-volume data with high performance, to

increase performance by scaling out, and to have no SPOF.

In SPring-8, furthermore, low latency access of the latest

values is required because there is a constant need for

these values by many accelerator control GUIs. Thus, a

cache server keeping only the most recent values was

adopted so that a high performance can be achieved.

NoSQL (Not only SQL) databases that have been

actively developed in the web service fields satisfy our

requirements. Most of them provide the required

mechanisms such as high performance, horizontal scaling,

and fine control over availability. Among these databases,

we focused on Apache Cassandra [5] and Redis [6].

Apache Cassandra

Apache Cassandra is an open-source distributed

database of the Apache project. Its features include a

column-oriented data structure, high write performance,

fault tolerance, no SPOF, and so on. It is especially easy

to increase total throughput by adding more nodes to the

system (see Fig. 1). These features meet our requirements.

Furthermore, Most of the log data that we handle is time-

series data comprised of a time stamp and value, and so

Cassandra with its column-type data structure is the most

suitable database for the perpetual archive.

#kago@spring8.or.jp

TUMIB06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

532C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

Cassandra values availability and partitioning tolerance

in the CAP theorem [7]. This means that its consistency

provides a few guarantees and is called eventual

consistency. When the data are taken from a cluster with

six nodes and a replication factor of three, we found that

the time required for guaranteeing consistency is as much

as 1 sec.

To prevent this inconsistency, the cache server is

utilized. The data are inserted into both Cassandra and the

cache server in parallel. The consistency is complemented

by a way to obtain the latest value from the cache server.

Redis

Redis is adopted for the cache server. It is an in-

memory key-value store, and provides high performance

access to the data. We verified that the write latency of

Redis is lower than that of Cassandra (see Fig. 2). This

low latency complements Cassandra’s consistency and

provides the real time data to the control GUI.

Another advantage of Redis is its support of a wide

variety of structures such as list, set, sorted set, and hash.

Figure 2: The write latency of Redis compared to

Cassandra, where low latency is better. Testing conditions

of Cassandra are the same as Fig. 1.

SYSTEM ARCHITECTURE

The new data logging system is designed on a three-

layer model. Figure 3 shows the architecture of the new

system. It is composed of clients who generate logs, a

relay server, and the database engine. All devices are

connected through a network. The log data is sent to

several relay servers at the client’s own timing. The relay

server creates the database commands from the received

message and inserts the log into the database.

Figure 3: System architecture.

Client

Users who want to store the log into this system insert

the prepared function into their data acquisition programs.

The code packs the messages using MessagePack [8], and

pushes the messages using the Push/Pull pattern of the

ZeroMQ [9] communication library. The Push/Pull

pattern sends messages from one sender to several

receivers by the round robin algorithm and can easily

realize load balancing. When the sender detects a problem

with a receiver, the message is sent excluding this receiver.

 Any platform or programming language that supports

ZeroMQ and MessagePack can be a client of this system.

Users can easily start or stop data acquisition because the

client can be connected at any time to the pull socket of

ZeroMQ.

Relay Server

The relay server works as a gateway between the client

and database. Multiple processes run on the relay server:

the relay process and writer processes.

The relay process manages the pull socket for receiving

messages from the client and transfers the received

message to a writer process. For communication between

the relay and writer processes, the Push/Pull pattern of the

ZeroMQ is adopted.

The writer process converts the received message into a

database command and inserts the data into Cassandra

and the Redis in parallel. As the API of both databases is

synchronous, they are blocked during the write process.

Figure 1: The write throughput when the access load is

increased. Hardware specifications of a node are Xeon

2.93 GHz, 8 GB RAM, 64 bit Centos 6.2. Cassandra is

version 1.0.5. Data size per row is 20 bytes, and a client

inserts 1,000 rows at once.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUMIB06

Data Management and Processing

ISBN 978-3-95450-139-7

533 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

To prevent waiting, several writer processes are activated

to parallelize database access.

Cassandra

We designed the data structure to efficiently handle

time-series data. The data structure is shown in Fig. 4.

One row-key provides the information of one day’s signal.

The row-key name is formed from a signal name in

addition to a date string and contains collections of

columns. One column consists of a name formed from a

timestamp, and a value. To provide a flexible data format

such as an array, structure, or map, the logging data is

serialized by MessagePack and inserted into the column

value.

Cassandra distributes the data to each cluster node

under the MD5 hash value of the row key. According to

this mechanism, this data structure makes it possible to

distribute data evenly into the Cassandra nodes. In

addition, the reading performance will be improved when

the data are accessed for a period of one day because a

single node stores the data for one day of one signal.

Figure 4: Cassandra’s data structure.

Redis

Redis provides a wide variety of system types. In this

system, a simple string type is employed. A key is formed

from the signal name. The value is string data packed log

data and its timestamp by MessagePack.

Redis works as a single process and does not support

the cluster system. Furthermore, Redis has a simple

master-slave replication function, but does not provide a

failover mechanism. These features mean that Redis has

no horizontal scalability and it has a single point of failure.

To fix this problem, multiple Redis servers are

parallelized by an access library that we developed. This

library provides the functions for failover, load balancing,

and horizontal scalability. These functions are realized by

distributing the data to the target Redis server by the hash

value of the key.

Data Access

Users can access the database using our prepared

library. Since this library is compatible with the previous

library, a user’s code does not have to change. In addition,

the programmers do not have to know in which database

the data is stored. They can obtain data by just specifying

the human-understandable signal name and time range.

TEST

The prototype of the new data logging system was

evaluated long-term to check stability. Table 1 shows the

test parameters. These data are actually generated in the

SACLA [10]. The acquisition cycle is faster than the

current one.

Table 1: Testing Parameters

Item Specification

Hardware Intel Xeon X3470 2.93 GHz 4 Core

CentOS 6.2 64 bit

Redis Version 2.6.10

Number of process: 4

Apache Cassandra Version 1.1.5

6 nodes cluster (replica: 3)

OracleJavaVM 1.6.0

Data Acquisition Number of clients: 240

Number of relay processes: 4

Number of writer processes: 24

Log Data Number: 47,397

Cycle: 1 Hz

Average message size: 60 bytes

Write Test

The writing test was conducted for three months. The

results show that no data went missing during the test and

no impact was found on the writing performance even

when the server was shut down.

The total write performance of the system was not

measured because of the asynchronous writing

characteristic, but the throughputs of each process were

measured. It was seen that about 180,000 operations per

second (ops/sec) can be transferred per relay process. The

throughput of one writer process was about 5,000 ops/sec.

From these results, it is estimated that the total throughput

of the system is about 120,000 ops/sec or more.

Read Test

To simulate actual operation status as accurately as

possible, the reading test was conducted along with the

writing test. One reading client was activated and the

latency was measured.

For Redis, the results of this measurement over

1,000,000 times showed that the average read latency was

0.26 ms and the standard deviation was 0.14 ms.

Additionally, a test with a high load was provided. When

2,000 requests a second were made from 200 clients, the

average read latency was 1 ms, with the worst latency

being 6 ms.

For Cassandra, the read latency of the data for one day

(86,400 points) was measured 10,000 times. The results

showed that the average latency was 1.01 sec. and the

TUMIB06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

534C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

standard deviation was 0.18 sec. We found that the read

latency could be shortened to 0.2 sec. by parallelizing the

reading process.

CURRENT STATUS

We are now migrating from the previous MADOCA

system. The new system has been installed in the actual

environment. Figure 5 illustrates the structure and Table 2

shows the specifications of the servers.

Figure 5: System structure. Arrows show the data flow.

Table 2: Specifications of Servers

Item Relay Server Cassandra Server

Processor Intel Xeon E5-2430, 2.2 GHz, 12 core

Memory 16 GB

OS CentOS 6.4 64 bit

Storage 1 SAS 15 Kr/m

450 GB × 2 Raid 1

SAS 15 Kr/m

450 GB × 2 Non Raid

Storage 2 N/A SATA 7,200 r/m

3 TB × 2 Non Raid

Network 1 Gb Ethernet × 2 ports

Power

Supply

Dual, Hot-plug,

Redundant power

supply, 550 W

Single, Hot-plug,

 550 W

The system consists of eight 1U servers. Two out of the

eight servers work as the relay server and the remaining

six servers comprise the Cassandra cluster.

A relay process, twenty writer processes, and a Redis

server run on one relay server. From the estimation of the

write performance described previously, this structure can

provide a throughput of about 100,000 ops/sec per relay

server. This can handle the number of signal points that

the current system handles. However, in consideration of

availability and reliability, two relay servers were

installed and the workload is balanced between them.

The Cassandra server mounts a 6 TB disk for data

storage and a 450 GB disk for the commit log. The

commit log disk that is constantly accessed for write

durability, is separated to reduce I/O contention.

Cassandra Versions 1.2 and later include the JBOD

function that can distribute data onto several disks. The

aggressive use of this function eliminates the need for

RAID for data storage. In addition, it is expected that the

write performance will improve by increasing the writing

tasks.

Since Cassandra is a distributed system, it loads the

network to handle its read/write requests and replication

of data across nodes. Therefore, the network for

communication between the clusters was constructed

independently.

CONCLUSION AND FUTURE PLAN

We developed a data logging system using two NoSQL

databases. Apache Cassandra was used as the permanent

storage and Redis was used for the cache server. ZeroMQ

was adopted for asynchronous communication. The

complicated data structure was supported by

MessagePack so that it could be stored into a database.

The new system provides high performance, availability,

and horizontal scalability. It has now been installed to

replace the data logging system of the current MADOCA.

In the near future, data acquisition will begin small and

the scale will gradually grow. Along with these future

plans, we will construct an alarm system using this

system and will pursue multi-platform support and web

pages.

REFERENCES

[1] R. Tanaka et al., “The First Operation of Control System at

the SPring-8 Storage Ring”, Proceedings of ICALEPCS

1997, Beijing, China, (1997) p.1.

[2] A. Yamashita et al., “The database system for the SPring-8

storage ring control”, Proceedings of ICALEPCS1997,

Beijing, China, (1997).

[3] http://en.wikipedia.org/wiki/ACID

[4] T. Matsumoto et al., “Next-Generation MADOCA for The

SPring-8 Control Framework”, in these proceedings of

ICALEPCS2013, San Francisco, California.

[5] http://cassandra.apache.org

[6] http://redis.io

[7] Nancy Lynch and Seth Gilbert, “Brewer’s Conjecture and

the Feasibility of Consistent, Available, Partition-Tolerant

Web Services”, ACM SIGACT News, Volume 33 Issue 2

(2002), p. 51-59.

[8] http://www.msgpack.org

[9] http://www.zeromq.org

[10] T. Ishikawa et al., “A Compact X-ray Free-electron Laser

Emitting in the Sub-angstrom Region”, Nature Photonics 6,

(2012) p. 540-544.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUMIB06

Data Management and Processing

ISBN 978-3-95450-139-7

535 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

