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Abstract 
We have developed a scalable and flexible data logging 

system for SPring-8 control. The current data logging 

system, powered by a relational database management 

system (RDBMS), has been storing log data for sixteen 

years. With the experience, we recognized the lack of 

RDBMS flexibility with respect to data logging such as 

the lack of adaptability in data format and acquisition 

cycle, the complexity of the data management, and the 

lack of horizontal scalability. To solve this problem, we 

designed a new framework. Two NoSQL databases, Redis 

and Apache Cassandra, were adopted to store log data. 

ZeroMQ messages packed by MessagePack were 

employed for communication. The prototype of the new 

system showed high performance and reliability. In this 

paper, we discuss its requirements and structure, the 

results of performance evaluations and its current status.  

INTRODUCTION 

The SPring-8 control system adopts the MADOCA [1] 

framework developed in 1995. A relational database 

management system (RDBMS) [2] is one of the features 

of MADOCA. Device information, operation parameters, 

and log data are stored in a single RDBMS. This system 

has supported the stable operation and development of 

SPring-8. 

However, in light of the new requirements resulting 

from the recent improvement and future plans of the 

accelerator, this system will not have the adequate 

performance, capacity, or extendibility. In accelerator 

beam diagnostics, handling large volume data such as 

wave forms and image data has become a common task. 

In addition, there is a need for data acquisition with a 

shorter sampling cycle (< 10 Hz). These changes require 

the data logging system to increase writing performance 

and to handle large-volume data, but it is not easy to 

extend the system for the following reasons. 

• The RDBMS has no horizontal scalability. The 

advantages of the RDBMS, such as joining tables 

and securing ACID [3], become bottlenecks when 

scaled out. The general method for improving server 

performance is to change to a high-spec server, but 

hardware costs are continuously increasing. 

• The data management is complex. To improve 

writing performance in MADOCA, a number of log 

data are placed on one row to reduce the number of 

SQL statements needed when they are stored in 

RDBMS. When new data are registered on the 

RDBMS, a new table has to be created. 

• The data acquisition has no flexibility. The polling 

system of the server-client model uses tight coupled 

ONC-RPC and is highly interdependent. Therefore, 

the data acquisition is limited by the OS and 

language environments. 

To solve these problems and contribute to the further 

development of SPring-8, we developed a new data 

logging system as a part of the MADOCA II project [4]. 

The design concepts of the new system are as follows: 

• Database and data acquisition need to be scalable 

such that data volume can be increased and 

performance can be improved at a low cost. 

• It should be easy to migrate from the current system. 

The MADOCA manages data with human readable 

names such as “sr_mag_ps_b/current_dac.” The new 

system will adopt the same methods. 

• The new system should be highly reliable without an 

SPOF (single point of failure). 

• Users without any knowledge of databases should be 

able to easily start collecting data.  

• The RDBMS will be used conventionally for static 

information such as device information and 

operation parameters. 

DATABASE SELECTION  

We designed a storage system that consists of a 

database for the perpetual archive and a database for the 

real time data cache. The permanent storage has to be able 

to handle large-volume data with high performance, to 

increase performance by scaling out, and to have no SPOF. 

In SPring-8, furthermore, low latency access of the latest 

values is required because there is a constant need for 

these values by many accelerator control GUIs. Thus, a 

cache server keeping only the most recent values was 

adopted so that a high performance can be achieved. 

NoSQL (Not only SQL) databases that have been 

actively developed in the web service fields satisfy our 

requirements. Most of them provide the required 

mechanisms such as high performance, horizontal scaling, 

and fine control over availability. Among these databases, 

we focused on Apache Cassandra [5] and Redis [6]. 

Apache Cassandra 

Apache Cassandra is an open-source distributed 

database of the Apache project. Its features include a 

column-oriented data structure, high write performance, 

fault tolerance, no SPOF, and so on. It is especially easy 

to increase total throughput by adding more nodes to the 

system (see Fig. 1). These features meet our requirements. 

Furthermore, Most of the log data that we handle is time-

series data comprised of a time stamp and value, and so 

Cassandra with its column-type data structure is the most 

suitable database for the perpetual archive. 
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Cassandra values availability and partitioning tolerance 

in the CAP theorem [7]. This means that its consistency 

provides a few guarantees and is called eventual 

consistency. When the data are taken from a cluster with 

six nodes and a replication factor of three, we found that 

the time required for guaranteeing consistency is as much 

as 1 sec.  

To prevent this inconsistency, the cache server is 

utilized. The data are inserted into both Cassandra and the 

cache server in parallel. The consistency is complemented 

by a way to obtain the latest value from the cache server. 

Redis 

Redis is adopted for the cache server. It is an in-

memory key-value store, and provides high performance 

access to the data. We verified that the write latency of 

Redis is lower than that of Cassandra (see Fig. 2). This 

low latency complements Cassandra’s consistency and 

provides the real time data to the control GUI.  

Another advantage of Redis is its support of a wide 

variety of structures such as list, set, sorted set, and hash. 

Figure 2: The write latency of Redis compared to 

Cassandra, where low latency is better. Testing conditions 

of Cassandra are the same as Fig. 1. 

SYSTEM ARCHITECTURE 

The new data logging system is designed on a three-

layer model. Figure 3 shows the architecture of the new 

system. It is composed of clients who generate logs, a 

relay server, and the database engine. All devices are 

connected through a network. The log data is sent to 

several relay servers at the client’s own timing. The relay 

server creates the database commands from the received 

message and inserts the log into the database. 

Figure 3: System architecture. 

Client 

Users who want to store the log into this system insert 

the prepared function into their data acquisition programs. 

The code packs the messages using MessagePack [8], and 

pushes the messages using the Push/Pull pattern of the 

ZeroMQ [9] communication library. The Push/Pull 

pattern sends messages from one sender to several 

receivers by the round robin algorithm and can easily 

realize load balancing. When the sender detects a problem 

with a receiver, the message is sent excluding this receiver. 

 Any platform or programming language that supports 

ZeroMQ and MessagePack can be a client of this system. 

Users can easily start or stop data acquisition because the 

client can be connected at any time to the pull socket of 

ZeroMQ. 

Relay Server 

The relay server works as a gateway between the client 

and database. Multiple processes run on the relay server: 

the relay process and writer processes. 

The relay process manages the pull socket for receiving 

messages from the client and transfers the received 

message to a writer process. For communication between 

the relay and writer processes, the Push/Pull pattern of the 

ZeroMQ is adopted. 

The writer process converts the received message into a 

database command and inserts the data into Cassandra 

and the Redis in parallel. As the API of both databases is 

synchronous, they are blocked during the write process. 

Figure 1: The write throughput when the access load is 

increased. Hardware specifications of a node are Xeon 

2.93 GHz, 8 GB RAM, 64 bit Centos 6.2. Cassandra is 

version 1.0.5. Data size per row is 20 bytes, and a client 

inserts 1,000 rows at once.  
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To prevent waiting, several writer processes are activated 

to parallelize database access. 

Cassandra 

We designed the data structure to efficiently handle 

time-series data. The data  structure is  shown in Fig. 4. 

One row-key provides the information of one day’s signal. 

The row-key name is formed from a signal name in 

addition to a date string and contains collections of 

columns. One column consists of a name formed from a 

timestamp, and a value. To provide a flexible data format 

such as an array, structure, or map, the logging data is 

serialized by MessagePack and inserted into the column 

value. 

Cassandra distributes the data to each cluster node 

under the MD5 hash value of the row key. According to 

this mechanism, this data structure makes it possible to 

distribute data evenly into the Cassandra nodes. In 

addition, the reading performance will be improved when 

the data are accessed for a period of one day because a 

single node stores the data for one day of one signal.  

Figure 4: Cassandra’s data structure. 

Redis 

Redis provides a wide variety of system types. In this 

system, a simple string type is employed. A key is formed 

from the signal name. The value is string data packed log 

data and its timestamp by MessagePack.  

Redis works as a single process and does not support 

the cluster system. Furthermore, Redis has a simple 

master-slave replication function, but does not provide a 

failover mechanism. These features mean that Redis has 

no horizontal scalability and it has a single point of failure. 

To fix this problem, multiple Redis servers are 

parallelized by an access library that we developed. This 

library provides the functions for failover, load balancing, 

and horizontal scalability. These functions are realized by 

distributing the data to the target Redis server by the hash 

value of the key. 

Data Access 

Users can access the database using our prepared 

library. Since this library is compatible with the previous 

library, a user’s code does not have to change. In addition, 

the programmers do not have to know in which database 

the data is stored. They can obtain data by just specifying 

the human-understandable signal name and time range. 

TEST 

The prototype of the new data logging system was 

evaluated long-term to check stability. Table 1 shows the 

test parameters. These data are actually generated in the 

SACLA [10]. The acquisition cycle is faster than the 

current one. 

Table 1: Testing Parameters 

Item Specification 

Hardware Intel Xeon X3470 2.93 GHz 4 Core 

CentOS 6.2 64 bit 

Redis Version 2.6.10 

Number of process: 4 

Apache Cassandra Version 1.1.5 

6 nodes cluster (replica: 3) 

OracleJavaVM 1.6.0 

Data Acquisition  Number of clients: 240 

Number of relay processes: 4 

Number of writer processes: 24 

Log Data Number: 47,397 

Cycle: 1 Hz 

Average message size: 60 bytes 

Write Test 

The writing test was conducted for three months. The 

results show that no data went missing during the test and 

no impact was found on the writing performance even 

when the server was shut down.  

The total write performance of the system was not 

measured because of the asynchronous writing 

characteristic, but the throughputs of each process were 

measured. It was seen that about 180,000 operations per 

second (ops/sec) can be transferred per relay process. The 

throughput of one writer process was about 5,000 ops/sec. 

From these results, it is estimated that the total throughput 

of the system is about 120,000 ops/sec or more. 

Read Test 

To simulate actual operation status as accurately as 

possible, the reading test was conducted along with the 

writing test. One reading client was activated and the 

latency was measured.  

For Redis, the results of this measurement over 

1,000,000 times showed that the average read latency was 

0.26 ms and the standard deviation was 0.14 ms. 

Additionally, a test with a high load was provided. When 

2,000 requests a second were made from 200 clients, the 

average read latency was 1 ms, with the worst latency 

being 6 ms. 

For Cassandra, the read latency of the data for one day 

(86,400 points) was measured 10,000 times. The results 

showed that the average latency was 1.01 sec. and the 

TUMIB06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

534C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing



 

 

standard deviation was 0.18 sec. We found that the read 

latency could be shortened to 0.2 sec. by parallelizing the 

reading process. 

CURRENT STATUS 

We are now migrating from the previous MADOCA 

system. The new system has been installed in the actual 

environment. Figure 5 illustrates the structure and Table 2 

shows the specifications of the servers.  

Figure 5: System structure. Arrows show the data flow. 

Table 2: Specifications of Servers 

Item Relay Server Cassandra Server 

Processor Intel Xeon E5-2430, 2.2 GHz, 12 core 

Memory 16 GB 

OS CentOS 6.4 64 bit 

Storage 1 SAS 15 Kr/m 

450 GB × 2 Raid 1

SAS 15 Kr/m 

450 GB × 2 Non Raid

Storage 2 N/A SATA 7,200 r/m 

3 TB × 2 Non Raid 

Network 1 Gb Ethernet × 2 ports 

Power 

Supply 

Dual, Hot-plug, 

Redundant power 

supply, 550 W 

Single, Hot-plug, 

 550 W 

The system consists of eight 1U servers. Two out of the 

eight servers work as the relay server and the remaining 

six servers comprise the Cassandra cluster.  

A relay process, twenty writer processes, and a Redis 

server run on one relay server. From the estimation of the 

write performance described previously, this structure can 

provide a throughput of about 100,000 ops/sec per relay 

server. This can handle the number of signal points that 

the current system handles. However, in consideration of 

availability and reliability, two relay servers were 

installed and the workload is balanced between them. 

The Cassandra server mounts a 6 TB disk for data 

storage and a 450 GB disk for the commit log. The 

commit log disk that is constantly accessed for write 

durability, is separated to reduce I/O contention. 

Cassandra Versions 1.2 and later include the JBOD 

function that can distribute data onto several disks. The 

aggressive use of this function eliminates the need for 

RAID for data storage. In addition, it is expected that the 

write performance will improve by increasing the writing 

tasks. 

Since Cassandra is a distributed system, it loads the 

network to handle its read/write requests and replication 

of data across nodes. Therefore, the network for 

communication between the clusters was constructed 

independently. 

CONCLUSION AND FUTURE PLAN 

We developed a data logging system using two NoSQL 

databases. Apache Cassandra was used as the permanent 

storage and Redis was used for the cache server. ZeroMQ 

was adopted for asynchronous communication. The 

complicated data structure was supported by 

MessagePack so that it could be stored into a database. 

The new system provides high performance, availability, 

and horizontal scalability. It has now been installed to 

replace the data logging system of the current MADOCA. 

In the near future, data acquisition will begin small and 

the scale will gradually grow. Along with these future 

plans, we will construct an alarm system using this 

system and will pursue multi-platform support and web 

pages. 
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