
REIMPLEMENTING THE BULK DATA SYSTEM  
WITH DDS IN ALMA ACS  

B. Jeram, G. Chiozzi, R. Javier Tobar, ESO, Garching bei Muenchen, Germany 
R. Amestica, NRAO, Charlottesville, VA, U.S.A 

M. Watanabe, NAOJ, Tokyo, Japan

Abstract 
Bulk Data (BD) is a service in the ALMA Common 

Software [1] to transfer high volumes of astronomical 
data from many-to-one, one-to-many or many-to-many 
clients. The main application is in the Correlator, 
(responsible for processing raw data from the antennas), 
which retrieves data from antennas on up to 32 
computers. Data is forwarded to a master computer and 
combined to be sent to consumers. The throughput 
requirement both to/from the master is 64 MBytes/sec, 
differently distributed based on observing conditions. 
Requirements for robustness make the application very 
challenging. The first implementation, based on the 
CORBA A/V Streaming service [2], showed weaknesses. 
We therefore decided to replace it, even though ALMA 
was about to start operations; therefore it was essential to 
provide for careful testing. We have chosen the DDS 
(Data Distribution Service) [3] as core technology, 
because it is a well supported standard, widespread in 
similar applications. We have evaluated mainstream 
implementations, with emphasis on performance, 
robustness and error handling. We have successfully 
deployed the new BD, making it easy to switch between 
old and new for testing purposes. We discuss challenges 
and lessons learned. 

INTRODUCTION 
The Atacama Large Millimeter/Sub-Millimeter Array 

(ALMA) [4] is a radio telescope that comprises 54 12-
meter and 12 7-meter antennas operating in the millimeter 
and sub-millimeter wavelength range, with baselines of 
up to 16km. It is an international collaboration between 
Europe, North America and East Asia astronomical 
organizations and is located at an altitude above 5000m 
on the Chajnantor plateau in the Chilean Atacama desert. 
Early science operations started in 2011, and the 
observatory was inaugurated in March 2013. The SW that 
operates the telescope is built upon the ALMA Common 
Software (ACS) [1] - a Container-Component CORBA 
based middleware. ACS provides a set of packages 
including development tools, common services and  
design patterns to build and deploy distributed systems.  

BULK DATA 
The ACS Bulk Data (BD) is an ACS service, which 

allows transferring high volumes of data using as much as 
possible of the available bandwidth in different 
sender/receiver configurations.  

The bulk data is used in ALMA to transfer data 
between 6 ALMA sub-systems: antenna/array control 

system, two correlator control systems, the archive, the 
online telescope calibration and the offline system. Two 
kinds of scientific data go through this service: 
interferometric data from the correlators (the baseline 
(BL) and the compact array (ACA) correlators) as well as 
total power data. A correlator [5] is a specialized 
computer that, correlates/combines the signals received 
by an array of several antennas. The correlator can handle 
multiple arrays simultaneously, and each array produces 
an independent stream of data. 

Data from the correlator are retrieved by clusters of 16 
and 32 Correlator Data Processing (CDP) real-time 
computers respectively for BL and ACA correlators. 
These nodes process the raw lag data into spectral results, 
transferred to a central master computer using BD in 
many to one configuration (one for each correlator). The 
CDP master combines data from the nodes and forwards 
them to three receivers: Archive, Telescope Calibration 
and Real-Time Filler, all located about 30km away, using 
bulk data in one to many configurations. 

Total power data collected from one or more arrays 
presents another set of data streams which is also 
distributed to these three types of receivers.  

We can have therefore several concurrent data streams. 
The requirement for the system is to be able to handle a 
peak data rate for all the streams of 64Mbytes/sec.  

BASIC CONCEPTS 
The BD was from the beginning designed to keep the 

underlying details hidden from the developer, hiding the 
underlying DDS, or A/V behind a generic API [6].  

Although the new Bulk Data implementation (BDNT) 
is based on ALMA requirements, it was designed and 
implemented to be usable also in other contexts.  

The system API is based on the following concepts: 
 A sender is an entity that sends data out. 
 A receiver is an entity that receives data  
 Data are transferred from the Sender(s) to the 

Receiver(s) on a flow.  
 One or more flows are grouped inside a stream.  
 We refer to each stream and each flow with a name. 

A specific data transfer path is identified uniquely by the 
combination of stream and flow names.  

A simple high level protocol is provided in order to: 
 Create/destroy streams and flows 
 Connect/disconnect to streams and flows 
 Inform receivers that data is going to be sent 
 Transmit and receive data 
 Inform receivers about transmission completeness 

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB08

Software Technology Evolution

ISBN 978-3-95450-139-7

969 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Great care has been taken in designing interfaces and 
implementing code that enables graceful handling of  
errors in connection/disconnection of partners and in data 
transmission: a requirement was for a system able to cope 
with crashes in partners, and with networking problems. 

The current bulk data service is implemented in C++. 

LIMITATIONS OF THE CORBA A/V 
We implemented the first version of BD [6] on top of 

the CORBA A/V streaming service (see Fig. 1), using the 
TAO implementation [7]. At the time of selection (more 
than 10 years ago) the CORBA specification for the A/V 
service was very promising and TAO provided it. 
Unfortunately, this implementation did not adequately 
handle anomalous conditions and errors, and has not been 
regularly maintained. At present time there are essentially 
no alternative implementations. 

To further complicate matters, during the years from 
initial implementation to full operation of ALMA, new, 
unforeseen requirements for BD have surfaced, which are 
not easily covered using the A/V service. 

Thanks to the extensive usage over more than 10 years, 
we have identified several issues in TAO A/V 
implementation that are very relevant for our production 
environment: 

 Poor error handling and lack of reliability and 
robustness in case of instability with some other parts of 
the ALMA SW. This also made debugging difficult. 

 No full thread-safety. The ALMA SW must handle 
several arrays in parallel and therefore BD must be 
capable of creating/destroying connections while data 
transfer on other streams is in progress. Lack of thread 
safety caused several issues difficult to debug.  

 Lack of proper resource clean up makes problematic 
re-connection and re-initialization of BD applications. 

 Optimized for one-to-one transfers. Although this 
was the original requirement, we “discovered” that we 
actually needed also one-to-many. We had to re-design 

BD, increasing complexity, and stretching A/V 
capabilities. 

 Distributor. The TAO A/V implementation provides 
plug-ins for different communication protocols. UDP 
makes it possible to multicast the data, but does not work 
reliably, so we have found it necessary to use TCP. To 
satisfy the “send data to 3 receivers” requirement we had 
to develop a “distributor” which on one side receives and 
on the other side distributes data to many receivers. In 
order to achieve the required data rate of 64Mbytes/sec 
we would have had to deploy the distributor on a 
dedicated machine with at least 4 network cards. This 
imposes serious limitations on the deployment 
architecture and reduces flexibility.  

 Limitations in stream management. Using TAO A/V 
we could not implement applications able to handle 
multiple streams. We had to fall back to separate 
components per each array: in the case of 6 arrays this 
means that we would need 6x3 receivers + 6 distributors. 

 Rigid connection protocol. A/V requires connecting 
senders, distributors and receivers in a strict order. This 
increases the complexity of the system and makes startup 
and error recovery more difficult to implement. 

 
 
 
 
 
 
 
 
 
 
 
 

 

BL CDP master

BL CDP nodes: 1-16

0

High site -
AOS

Low site -
OSF

DistributorTotal Power
Processor

ACA CDP master

30 km

ACA CDP nodes: 1-32

0

...

...

Telescope Calibratiom

Real-Time Filler

Archive

XVSS VSS

 
Figure 1: Deployment of the old  and new (w/o distributor) BD. 

TUCOCB08 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

970C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



DDS IMPLEMENTATION 
These issues drove us to retarget our implementation to 

a more reliable mechanism, which we refer to as BD New 
Technology (BDNT).  

Since ALMA was already in the early science operation 
phase, our main concern was to avoid disrupting 
commissioning and operations by changing a core 
component of the ALMA SW.  

With this in mind we proceeded in the following way: 
 Conducted a thorough review of the requirements, 

significantly changed in the 10 years since inception. 
 Investigated possible candidate technologies, by 

analysing the market, looking at similar projects and 
developing prototypes. Criteria for selection were: 

o Satisfy the BD technical requirements 
o Mature and widely used technology 
o Well supported 
o Foreseeable long life span 
o Possibly used by others in our organizations 

 Selected a specific implementation, based on realistic 
tests at the operations site. 

 Developed a full scale prototype 
 Developed BDNT to allow having both new and old 

systems at the same time, with the ability of switching 
between the two at run time and of having some parts of 
the system using the new implementation while other 
parts were still using the old one. 

 Developed an offline suite of performance tests. 
 Ported applications to the new platform. 
 Organized testing campaigns on the site, deploying 

and testing the BDNT during technical time and 
switching back quickly to the old system during 
operation, to compare the behaviour or whenever 
requested by the observatory operation team. 

 Left it in operation after careful commissioning. 
The process, although taking longer than anticipated, 

has been very successful and BDNT has been put in 
operation without any major disruption to operations 

In line with the criteria mentioned above, we selected 
the DDS technology, because of its: 

 widespread use in institutes as well as in industry 
and military applications; 

 availability of several implementations (free and 
commercial); 

 availability of (commercial) support; 
 use by other projects in ESO [8] and already 

evaluated as a replacement for other ACS services 
[9][10]; 

 availability of reliable multicast mode, allowing us to 
get rid of the distributor component (and dedicated 
computer) for sending data to multiple receivers at once 

In order to select a specific DDS vendor we developed 
a prototype implementing core features. We tested several 
products (OpenDDS, RTI, OpenSplice and CoreDX) [11] 
against the requirements, with particular attention to 
performance for many-to-one and one-to-many 
communication (multicast).  

Each implementation was extensively tested in 
particular for the use cases where the old BD suffered the 
most - error handling, reliability and robustness: 

 sudden disconnect (crash) of any sender/receiver(s)  
 slow / blocking receiver(s)  
 graceful connect/disconnect of any receiver at any 

time – in particular while transferring data  
 simulation of network problems such as slow 

network or cut cables  
 parallel sending of data (flows)  

The prototypes also helped us to get a feel for the 
difficulties in porting an application between different 
implementations: our conclusion is that the DDS API is 
not (yet) as well standardized and interoperable as 
CORBA, but differences are manageable.  

We also considered it necessary to test the pure DDS 
behaviour in the (network) infrastructure of the ALMA 
operational site, with the simplest possible test 
applications.  The network infrastructure there is quite 
complex because it has to connect the computers at the 
high site (the AOS, where antennas and correlators are 
located) with the computers in the control room at the low 
site (the OSF, 30 kms away). The traffic has to cross 
several subnets interconnected with different switches. 

As expected, it took some time and experimenting 
before we could get multicasting working with the 
required performance. Thanks to a very effective 
collaboration with IT network specialists and debugging 
down to the level of RTPS packets with network sniffers, 
we could solve several real world issues such as:  

 configuring network switches to enable multicast and 
IGMP to prevent flooding the network with multicast 
traffic 

 tuning DDS QoS parameters like the TTL (time  to 
leave) for UDP packets 

 properly configuring network cards and drivers (like 
network bonding) to achieve required throughput for 
computers that send and receive data 

 switching DDS discovery from multicast to unicast 
to make it work with real-time Linux kernels lacking 
multicast support    

In the end, we managed to multicast data from the high 
site to 3 computers (with 1Gbit NIC) at the low site at a 
data rate of more than 900Mbit/sec using RTI and 
CoreDX. 

After evaluating all four different implementations we 
selected RTI, a commercial DDS. We chose RTI mainly 
because its implementation proved to be very stable, it 
provided good performance, and came with good 
documentation and support. 

Having chosen the DDS vendor, we moved on to the 
actual implementation, introducing several improvements 
with respect to the old BD, some thanks to DDS and some 
to our improved understanding of the requirements. 

The most significant changes were: 
 improved error handling, stability and robustness; 
 simplified, more intuitive, API; 

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB08

Software Technology Evolution

ISBN 978-3-95450-139-7

971 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



 simplified and more flexible deployment, thanks to 
reliable multicast (no more dedicated distributor computer 
and distributor components); 

 support for more than one stream per component (no 
longer a separate component set per each array); 

 flexible configuration: it is now possible to define 
default DDS QoS profiles for different environments 
(operations, testing…). These QoS settings can be 
overridden for each stream and flow in the configuration 
database, where the streams and flows are defined; 

 the connection order does not matter anymore and it 
is very easy to add a new receiver, for example to dump 
the data for testing purposes; 

 built-in support for trouble shooting; several 
mechanisms were added for (early) detection of problems 
with applications: checking (average and instantaneous) 
receiver’s data processing time, stricter checking of the 
BD high level protocol, logs containing protocol statistics 
(packets and heartbeats sent, packets resent …), several 
configurable levels of debug log messages, giving finer 
control over the details and volume of log messages; 

 availability of generic bulk data sender, receiver and 
receiver-sender (to simulate the CDP master) 
applications. These tools allow simulating different 
scenarios and loading conditions at any time. Such 
“synthetic tests” have proven extremely useful during the 
testing and in particular during the deployment of the 
software based on the new BD. 

At this point the new BD could be given to the 
subsystems development teams for application porting 
and to run/extend their subsystem tests. During this 
period we provided support and made improvements and 
bug fixes, thanks to the valuable and timely feedback 
from the application developers. 

After the porting of all the subsystems had been 
completed, we handed over the system to the integration 
and testing (ITS) team and we started testing the whole 
ALMA SW system with the new BD during technical 
time at the operational site. The main emphasis in the first 
tests was on the performance and robustness of the 
system as a whole, based on a list of tests covering in 
particular use cases that had caused problem with the old 
BD. The robustness test passed w/o problems, giving us 
confidence that the bulk data implemented with RTI DDS 
was very stable, robust and flexible. For example, it was 
now possible to recover from a crash of a component 
without having to restart the whole system. 

When we started running observations during early 
science time, we also discovered some problems. For 
example, we noticed that in certain conditions the data 
rate was dropping, triggering timeouts (gracefully handled 
by the new implementation). It turned out that the 
problem was due to delays introduced by excessive 
logging in the application code of one of the receivers, 
introduced during the porting process.  

This showed again that it is essential to look at the 
system as a whole - to evaluate the whole bulk data chain 
from deployment to application code.  

We felt into another interesting trap when the full 
correlator was brought online and we went from 4 to 16 
CDP nodes. At that point the new bulk data was 
configured to use reliable model for both: uni-cast UDP 
for many-to-one, and multi-cast UDP for one-to-many. 
We were getting unexpected timeouts when all nodes 
were sending out data at the same time to one computer 
with high throughput. We understood what was going on 
by analyzing the network traffic. The reliable model is 
implemented on top of UDP (intrinsically not reliable) 
where the acknowledgement mechanism (sending 
NACKs/ACKs) uses UDP as well. If the load of the 
network is very high, UDP datagrams get lost and many 
retries are needed, further increasing the load: at the end 
the performance drops dramatically. TCP instead 
(intrinsically reliable) handled these situations much 
better. We could test our supposition very easily just by 
changing the QoS configuration database to enable the 
TCP protocol for the many-to-one case. Now the CDP 
master (the part in the middle) works as receiver using the 
TCP protocol and on the other side as sender using multi-
cast UDP. 

CONCLUSION 
We have been able to successfully replace the 

infrastructure used in ACS for a critical service like the 
Bulk Data without hindering the commissioning and early 
science operations of the observatory. 

Although we could so far test the system with what is 
available:  54 out of 66 antennas, and 50% of the 
correlator data rate, we can be confident because we 
already see big improvements with respect to the old BD, 
in equivalent conditions. Actually we could only test the 
old BD with up to 40 antennas. As antennas were added 
to the array before the BD upgrade we had periodic 
problems that were very complex to debug, accompanied 
by system instabilities and could only be solved with 
considerable struggle. 

This work has demonstrated that DDS has a very good 
and solid architecture, solving our problems, and the 
quality of commercial implementations if very high. 

We have also learned from the issues that arose while 
commissioning highly distributed systems in a complex 
network infrastructure. No matter how high level your 
tools are, you need a good understanding of what is going 
on under the hood and the right instruments to analyze it: 
long live Wireshark!  

REFERENCES 
[1] G. Chiozzi et al., “ALMA Common Software (ACS), 

status and development”, ICALEPCS’09, Geneva, 
TUP101. 

[2] http://www.corba.org 
[3] http://portals.omg.org/dds 
[4] A. Farris et al., “The ALMA Telescope Control 

System”, ICALEPCS’05, Geneva, WE3A.3-6O. 
[5] J. Pisano et al, “ALMA Correlator Real-Time Data 

Processor”, ICALEPCS’05, Geneva, PO2.067-4 

TUCOCB08 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

972C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



[6] P. Di Marcantonio et al, “Transmitting Huge 
Amounts of Data: Design, Implementation  and 
Performance of  Bulk Data Transfer Mechanism  in 
ALMA ACS”, ICALEPCS’05, Geneva, PO1.032-6 

[7] N. Surendran et al., “The Design and Performance of 
a CORBA  Audio/Video Streaming Service”, 
Proceedings of   HICSS-32 vol. 8, Hawaii 1999, 
8043. 

[8]  R. Karban et al., “Towards a State Based Control 
Architecture for Large Telescopes: Laying  a 
Foundation at the VLT”, ICALEPCS’11,  Grenoble, 
FRBHMULT04 

[9]    J. Avarias et al., “Data Distribution Service as an 
Alternative to CORBA Notify Service  for the 
ALMA Common Software”, ICALEPCS’09 , Kobe, 
WEA006 

[10]  J.Avarias et al., “Introducing high performance 
distributed logging service for ACS”,  SPIE, San 
Diego, SPIE 7740. 

[11] http://en.wikipedia.org/wiki/Data_Distribution_Servi  
ce#List_of_Vendors  

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB08

Software Technology Evolution

ISBN 978-3-95450-139-7

973 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


