
TANGO – CAN ZMQ REPLACE CORBA?
A.Götz, E.Taurel, P.Verdier, ESRF, Grenoble, France

G.Abeille, SOLEIL, Gif sur Yvette, France

Abstract
TANGO [1] is a modern distributed device control sys-

tem toolkit used to control synchrotrons, lasers and a wide
variety of equipment for doing physics experiments. The
performance of the network protocol is a key component of
TANGO. TANGO is based on the omniORB (for C++) and
Jacorb (for Java) implementations of CORBA. CORBA of-
fers an interface definition language with mappings to mul-
tiple programming languages, an efficient binary protocol,
a data representation layer, and multiple services. In re-
cent years a new series of binary protocols based on AMQP
have emerged from the high frequency stock market trading
business. At about the same time a protocol called ZMQ [2]
was open sourced in 2008. In 2011 the TANGO commu-
nity decided to take advantage of ZMQ. In 2012 the kernel
developers successfully replaced the CORBA Notification
Service with ZMQ in TANGO V8. The first part of this
paper will present the software design, the issues encoun-
tered and the resulting improvements in performance. The
second part of this paper will present a study of how ZMQ
could replace CORBA completely in TANGO.

TANGO TOOLKIT
TANGO is a toolkit for building simple and complex

control systems. TANGO has been designed to manage
complexity simply. It does this by implementing all con-
trol objects as Devices or hierarchies of Devices. Devices
are local or network objects which implement device spe-
cific behaviour and follow the same model. All TANGO
Devices have state, a state machine, commands, attributes,
network access, polling, threading, security, database sup-
port, persistence, etc. TANGO implements synchronous,
asynchronous and event driven local and network commu-
nications as part of its library. The TANGO device model
has been successfully tested and used by many program-
mers to implement device access for hundreds of different
devices in tens of institutes.

TANGO comes as a library and with a complete set of
tools for monitoring, configuring and managing a TANGO
based control system. TANGO supports 3 programming
languages fully (C++, Java and Python) and a number of
languages are interfaced as clients (Labview, Matlab, and
IgorPro)

TANGO is open source software available free of charge.
The source code is on stored on two Sourceforge sites [3,
4].

TANGO AND CORBA
CORBA [5] was a de facto standard in the 90s for dis-

tributed communications used in many control systems.

The CORBA specification is managed by the Object Man-
agement Group. A number of commercial and open-source
implementations exist of all or a subset of the specifica-
tions.

TANGO has used CORBA for its communication layer
from the very beginning. The object oriented model of
CORBA partially inspired the TANGO Device Model. The
availability of open source highly efficient CORBA imple-
mentations like omniORB [6] in C++ and JacORB [7] in
Java have enabled TANGO to implement a high perfor-
mance protocol.

TANGO has been designed from the beginning to offer
the services a control system needs without relying com-
pletely on CORBA. For this reason TANGO uses only a
minimum set of essential features which are available in
all CORBA implementations. TANGO hides CORBA as
much as possible from the users and developers. This
makes it possible to replace CORBA in TANGO.

What’s Right with CORBA?
CORBA has many useful features which are required

by most distributed systems. TANGO uses the following
CORBA features:
• IDL - Interface Definition Language was used to de-

fine all TANGO data types and the Device class inter-
face

• languages - bindings to C++ and Java used for writing
servers and clients

• ORB - Object Request Broker for dispatching network
requests to Devices

• IOR - to identifiy objects and stringify object refer-
ences to the database

• corbaloc - connect to the database name service of
TANGO

• interceptors - to intercept all calls to Device and add
logging

• invocation - synchronous calls with timeout is the ba-
sic call for executing commands and reading/writing
attributes

• DII - asynchronous calls use the Dynamic Invocation
Interface

• collocation - in same process calls are used for trans-
parently co-locating Devices in the same process

• CDR - essential for efficient data marshalling and un-
marshalling of TANGO data types

• threading - multi-threading model of omniORB is es-
sential for implementing parallel client access effi-
ciently

• performance - the binary protocol of CORBA (IIOP)
and the efficient implementations were essential for
high throughput performance required by a modern
control system

TUCOCB07 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

964C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



What’s Wrong with CORBA?
Despite CORBA’s useful features and many success sto-

ries it has failed to deliver on its promise of becoming
the de facto standard for network computing. The reason
for this has been discussed at length on the net and var-
ious publications [8] have documented the shortcomings
of CORBA in detail. The main problem is that CORBA
has been designed by a committee without a reference im-
plementation. This has resulted in a bloated specifica-
tion. There is a lack of open source implementations of the
various CORBA services (Naming, Notification, Trading,
Transaction, Persistence). Even if not all of these services
are adapted for control systems, those which are (e.g. No-
tification) lack a well maintained open source implementa-
tion.

How TANGO Fixes CORBA
TANGO has worked around the shortcomings of

CORBA by implementing the missing features plus some
additional features as part of the TANGO library. The fol-
lowing services are implemented by TANGO:
• naming - based on a naming convention

(〈Domain〉/〈Family〉/〈Member〉), a database
and a database server
• versioning - uses inheritance to implement full com-

patibility between all versions of TANGO
• connection - management so that connections are

stateless and reconnect automatically
• persistence - memorised attributes are persisted via

the database
• security - access to devices in read and write can be

filtered based on the process UID, HOST and NET-
WORK
• startup - device distribution is configured in the

database, automatic startup managed by Starter
• logging - built-in distributed logging service
• polling - device polling built-in, automatically triggers

alarms and events
• caching - polling thread caches read values
• data types - large number (<20) of generic data types

implemented

With these features as part of TANGO the shortcomings
of CORBA are NOT an issue for TANGO. It is important
to stress that the choice of CORBA as a protocol has been
successful for TANGO. However CORBA’s problems are
real for systems adopting CORBA directly instead of us-
ing a toolkit like TANGO. This has lead to CORBA falling
out of favour with software developers. For this reason we
think the long term availability of CORBA can become an
issue.

Over the last couple of years new network communi-
cation libraries have appeared which offer new paradigms
for communication. They also implement new features not
possible or difficult to solve using CORBA. Since TANGO
has been designed from the beginning to be independent
of the network protocol it is natural to reflect on what is

required to replace CORBA with another communication
protocol like ZMQ and what the advantages would be.

WHY ZMQ?
ZMQ is a rising star in the world of network communi-

cations. ZMQ is an embeddable networking library that
acts like a concurrency framework. It provides sockets
that carry whole messages across various transports like in-
process, inter- process, TCP and multicast. Sockets can be
connected N-to-N with patterns like fanout, pub-sub, task
distribution and request-reply. Its asynchronous I/O model
is ideal for scalable multicore applications, built as asyn-
chronous message-processing tasks. It has many language
bindings and runs on most operating systems. ZMQ is re-
leased under the LGPL open source licence by iMatix.

Due to its efficient implementation of parallelism and
batching ZMQ has been benchmarked (cf. [9]) by the au-
thors and a number of studies (see [10] for example) to
perform better than other middleware including CORBA.

TANGO EVENTS ON ZMQ

Figure 1: TANGO events with ZMQ.

The TANGO kernel team has successfully ported the
TANGO events from CORBA Notification service to ZMQ.
The motivations for replacing the CORBA Notification
service were - (1) omniNotify (the Notification service

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB07

Software Technology Evolution

ISBN 978-3-95450-139-7

965 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



TANGO uses) is a dead project (bugs are not fixed, pack-
ages for new versions of operating systems are not avail-
able), and (2) the quest for higher performance, and (3)
the decision to simplify the architecture by suppressing
the need for a broker between the client and server. The
project started in 2011 and have been presented at the last
ICALEPCS conference (see [11]). The architecture of the
TANGO event service based on ZMQ is presented in Fig. 1.

C++ Implementation
TANGO events use 2 types of ZMQ sockets to send

events to clients. The PUB-SUB and REP-REQ socket
pairs. The PUB-SUB socket is used to send events from
device servers to clients over tcp running on the same or
different hosts. Two PUB-SUB sockets are created - one
for sending the event itself using CDR for encoding the
data, and one for sending a heartbeat to inform the client
that the server is still alive. The use of CDR has meant code
for marshalling and unmarshalling data types did not have
to change. On the client side all event data are received and
then dispatched via callbacks in the same thread.

Client threads subscribe to events via an inproc socket
to the TANGO event thread. Using a single thread to dis-
patching events in the client means the client could wait be-
hind a slow callback. Experience shows this is not a prob-
lem and is even a requirement for graphical applications.
If ever this becomes an issue the model can be extended to
dispatch events via a thread pool.

Being built on the C++ implementation, the TANGO
Python binding (PyTango) profits directly from the
TANGO events using ZMQ in C++ by simply recompiling.

Java Implementation
The Java implementation of TANGO events with ZMQ

follows the C++ implementation with the main difference
being the ZMQ library. Two versions of the library exist -
the JNI version which calls the C library version, and the
pure Java version (jeromq). Both versions have been tested
and are in production. The pure Java version has the advan-
tage that it is easier to use on mobile platforms. This is the
first time the TANGO Java servers implement events. The
code has profited from the recent upgrade of the TANGO
Java device server library [12].

Multicasting
ZMQ supports multicasting as an option. It uses the

openpgm [13] implementation of Practical General Multi-
cast (PGM). Multicasting is ideal for sending data to many
clients at high speed efficiently. The server sends the event
once to the network. The event data is distributed by the
network switches. PGM is a reliable protocol therefore en-
suring a reliable delivery of events.

The TANGO implementation of multicast events is com-
plicated by the fact that openpgm does not implement mul-
ticasting on the same host. TANGO detects if the client is
on the same host and if so, it switches to unicast. Multicast
events have to be configured via the TANGO database. The

rate and size of memory caching buffers have to be speci-
fied as properties in the TANGO database. Multicasting is
tested in TANGO but not used by any sites yet. Typical use
cases for multicast events are (1) a large number of clients
interested in the same event e.g. beam current, and (2) a lot
of data being sent at high speed e.g. images. Multicasting
is only implemented in C++ (and Python) currently.

See Fig. 2 for a comparison between TANGO scalar
events with ZMQ versus CORBA.

Figure 2: TANGO scalar events with ZMQ vs CORBA.

Table 1: TANGO Events With ZMQ Performance on Xeon
at 3 GHz

server to client data throughput

Java to Java 8 bytes 14.2 kHz
C++ to C++ 8 bytes 230 kHz
C++ to C++ 1 kbyte 122 kHz
C++ to C++ 1 Mbyte 1.2 kHz

High Water Mark
The High Water Mark (HWM) is a limit in ZMQ which

specifies the number of messages to retain in the local
buffer before taking special action like dropping them. The
philosophy of ZMQ is to continue working even if the
client does not treat messages as fast as they are received.
In TANGO this limit can be set via an api call or via an
environment variable. Two values are managed - one for
the device server and one for the client. The default size
is 100. If the HWM limit is reached then messages are
dropped and the client or server are informed via an excep-
tion. The limit is most critical for clients. For clients that
want to ensure receiving a large number of messages it is
necessary to set HWM to a large value e.g. 1000000.

REPLACING CORBA COMPLETELY
How to replace CORBA completely in TANGO with

ZMQ? The first issue is how to choose a ZMQ socket pat-
tern which ensures high performance for many clients and
servers. In Fig. 3 we propose an architecture based on
ZMQ ROUTER pattern to replace the current ORB based
architecture of TANGO device servers. The main fea-
tures of this proposal are a synchronous and asynchronous
socket which send requests via a ROUTER socket to device

TUCOCB07 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

966C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



Figure 3: TANGO a/synchronous calls with ZMQ.

servers. Each device server load balances the incoming re-
quests by dispatching them to a pool of REQ sockets. Each
REQ socket has a worker thread for executing the request.
This pattern resembles the multi-threading model of om-
niORB in C++ except that the pool of worker threads have
to be created and managed by TANGO. Once the request
is in a worker thread the execution can be done using the
existing code in the TANGO library.

Another issue which has to treated manually is co-
located calls i.e. calls to devices in the same process (where
a server is also a client of one of its own devices e.g. a serial
line). This is a well used pattern in TANGO and needs to be
treated in ZMQ by detecting co-location and then issueing
a call to an inproc: socket. The request is then dispatched
to a worker thread as if the request came from the network.

Other major issues are how to replace the CORBA fea-
tures TANGO relies on. Here is how we propose to replace
the CORBA features in TANGO:
• IDL - the IDL generated code will be replaced by

handwritten code, this is not a major issue because
TANGO only has ONE interface defined in 4 versions,
• languages - bindings exist to all languages used for

writing servers and clients (C++, Java and Python)
• ORB - a manually coded broker will dispatch network

requests to Devices, this requires the Device id to be
sent with each request

• IOR - a unique identifier will have to be re-invented
e.g. ZOR://Host:Port/Server/Device

• corbaloc - the database network address will be re-
placed by a series of ZMQ tcp address to allow redun-
dancy

• interceptors - to be coded if still needed in the
TANGO library

• invocation - synchronous and asynchronous calls with
timeout will be replaced by a ROUTER-to-ROUTER
ZMQ pattern (see above)

• co-location - needs to be detected manually and will
be replaced with an inproc: call

• CDR - a new library for serialising data types will be
needed (see below)

• threading - ZMQ provides multi-threading for receiv-
ing and dispatching requests, a thread pool of worker
threads will be implemented in the server

• performance - not a problem, ZMQ is a high through-
put protocol which is more efficient than CORBA’s
IIOP

Serialisation

An important issue is how to serialise and de-serialise
TANGO data types to and from the network. Over 20 data
types are implemented in TANGO today. CORBA’s CDR
serialisation is used to encode and decode them. Although
this works very well and has been used successfully for
sending TANGO events via ZMQ, CDR has to be replaced
if we want to remove all dependencies on CORBA.

One possibility is to use and existing library like
Google’s protobuf library or Capn Proto (faster version of
protobuf). It has the advantage of providing an IDL and
generates code for C++ and Java. There are pros and cons
to using an external library.

The alternative is to implement a manually coded solu-
tion for serialisation. Even if the number of data types to
support is significant they are stable. The code has to be
written (or generated) for C++ and Java and optimised by
hand. We reckon this will be one of the more time consum-
ing tasks to replace CORBA.

Compatibility

A major requirement of the TANGO community is to
maintain compatibility with existing code. This means
device servers and clients do not have to be changed,
only recompiled. In addition it must be possible to intro-
duce servers and clients using the new protocol gradually
in a running TANGO system without recompiling every-
thing. Forwards and backwards compatibility requires hav-
ing both protocols (CORBA and ZMQ) in the library and
detecting at runtime which one to use as was done for the
TANGO events on ZMQ. This requirement is the key to en-
able existing sites to adopt a new version of TANGO based
on a new protocol

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB07

Software Technology Evolution

ISBN 978-3-95450-139-7

967 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Implementation
The implementation of a pure ZMQ-based TANGO pro-

tocol is a non-trivial task. We estimate the work to be
about 12 months of coding and 12 months of testing for
C++ and about half as much for Java because it will follow
the C++ implementation. Work has started on a prototype
on Github. So far the ZMQ socket pattern has been tested
successfully. The next steps are to implement simple ver-
sions of the request broker and a simplified version of data
type serialisation. The community will be invited to test,
comment and contribute.

PROS AND CONS
What do we gain or lose by moving from CORBA to

ZMQ.
The main advantages moving to ZMQ are: (1) higher

performance, (2) simpler to program, (3) lighter, (4) more
portable for mobile and embedded platforms, (5) opens the
way to supporting other protocols e.g. SCTP, websock-
ets, (6) devices on embedded platforms could publish the
TANGO ZMQ protocol (TZMP) using a minimal protocol
stack, (7) longer life time for TANGO due to more modern
protocol, (8) large active user community.

The main disadvantages of moving away from CORBA
are: (1) more code to write because of less services in ZMQ
e.g. lack of serialisation.

CONCLUSION
The move to ZMQ for the TANGO event system has

been successfully completed. Replacing CORBA com-
pletely with ZMQ while still staying compatible with the
existing TANGO controls systems is possible. The tasks to
replace CORBA completely have been identified and there
are no show stoppers. The work involved is estimated to
be 24 person months of development to have a first ver-
sion: 12 for C++, 6 for Java and 6 testing. An additional
year of use in a running control system is required for test-
ing and debugging before having a 24/7 production sys-
tem ready. Replacing CORBA with ZMQ will prove that
TANGO can profit from modern protocols while preserving
the long term investments of developers and user. The deci-
sion to move to ZMQ will depend on the TANGO commu-
nity and the availability of financial and human resources.

ACKNOWLEDGEMENTS
The authors would like to thank Matias Guijarro and

Tiago Coutinho for their comments on the design and proof
reading.

REFERENCES
[1] http://www.tango-controls.org

[2] http://zeromq.org/

[3] https://sourceforge.net/projects/tango-cs

[4] https://sourceforge.net/projects/tango-ds

[5] http://en.wikipedia.org/wiki/CORBA

[6] http://omniorb.org

[7] http://www.jacorb.org

[8] Michi Henning, “The Rise and Fall of CORBA”, ACM
Queue, Vol. 4 No. 5 June 2006, http://queue.acm.org/

[9] http://ZMQ.org/results:10gbe-tests-v031

[10] A. Dworak, P. Charrue, F. Ehm, W. Sliwinski, and M.
Sobczak, “Middleware trends and market leaders 2011”,
ICALEPCS2011, Grenoble, October 2011, FRBHMULT05,
p. 533, http://www.jacow.org

[11] E. Taurel, “TANGO Collaboration and Kernel Status”,
ICALEPCS2011, Grenoble, October 2011, TUAAULT02,
p. 1334, http://www.jacow.org

[12] J. Meyer, “TANGO V8 - Another Turbo Charged Major Re-
lease”, ICALEPCS2013, San Francisco, October 2013, TU-
COCB10, http://www.jacow.org

[13] http://code.google.com/p/openpgm/

TUCOCB07 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

968C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


