
EPICS VERSION 4 PROGRESS REPORT*
Timo Korhonen#, PSI, Villigen,

Leo Dalesio, Michael Davidsaver, Martin Kraimer, Nikolay Malitsky, Guobao Shen, BNL, Upton,
Long Island, New York, USA

Matej Sekoranja, Cosylab, Ljubljana, Slovenia,
Andrew Johnson, ANL, Argonne, USA

David Hickin, James Rowland, Diamond, Oxfordshire, England
Ralph Lange, HZB, Berlin, Germany

Greg White SLAC, Menlo Park, California, USA

Abstract
EPICS Version 4 is the next major revision of the

Experimental Physics and Industrial Control System, a
widely used software framework for controls in large
facilities, accelerators and telescopes. The primary goal of
Version 4 is to improve support for scientific applications
by augmenting the control-centered EPICS Version 3
with an architecture that allows building scientific
services on top of it. Version 4 provides a new
standardized wire protocol, support of structured types,
and parametrized queries. The long-term plans also
include a revision of the IOC core layer. The first set of
services like directory, archive retrieval, and save set
services aim to improve the current EPICS architecture
and enable interoperability. The first services and
applications are now being deployed in running facilities.
We present the current status of EPICS V4, the
interoperation of EPICS V3 and V4, and how to create
services such as accelerator modelling, large database
access, etc. These enable operators and physicists to write
thin and powerful clients to support commissioning, beam
studies and operations, and opens up the possibility of
sharing applications between different facilities.

INTRODUCTION
EPICS version 3 supports a flat set of records and

access to those records via a protocol that supports a few
predefined structures [1]. While this serves well the needs
of device integration, scientific applications require wide
interfaces to access complex data and support for data
acquisition. As there has been no standard way to do this,
different mutually incompatible solutions have been
developed. A closer look at these middle layer toolkits
reveals a number of common patterns which have guided
us in the development of the EPICS 4 facilities.

The work on JavaIOC [2] to create a new IOC
(Input/Output Controller) that supports hierarchical
records to describe devices and physics data constructs
provided a starting point for the development. As the
development proceeded, the goal to write a new IOC gave
way to providing an extended set of structured data types
on top of the existing infrastructure to better support
various data sources for machine control and data
acquisition applications. Thus in EPICS version 4 the

version 3 database structures will be kept essentially
untouched and the records will be served through a new
network protocol. This makes the introduction of the new
facilities even in existing system easy, as all the previous
infrastructure will still be present.

Figure 1 is a simplified architecture drawing of an
EPICS 4-based system. Such a system can contain client
applications that only use Channel Access, only pvAccess
or applications that can use both. The middle layer
services would all need to use pvAccess for publishing
their services but can serve data from various sources.
The front-end IOCs contain both Channel Access and
pvAccess servers so that all participants of the system
have access to their resources.

The new features in version 4 extend the domain of
EPICS beyond embedded IOCs by enabling several types
of services like relational database stores, model services,
directory services, data aggregation services, etc., to be
built. These services can interoperate with traditional
IOCs to combine static data with live control data. One of
the main goals is also to bring EPICS into the domain of
data acquisition, not only by the support for structured
data but by optimizing the performance so that EPICS can
be used as a part of data processing chains and handling
big data volumes.

In the last two years the version 4 infrastructure has
been developed to a state that allows it to be merged into
the regular EPICS release series. At the moment it is
planned that the current 3.15 will be last release under the
version 3 series and the next major release will be
carrying the version number 4. At the time of writing,
EPICS 4 consists of a number of modules (pvCommon,
pvData, pvAccess, pvaSrv, etc.) that are compiled and
used on top of an EPICS version 3 base release.

NEW FEATURES
Version 4 new features target the implementation of a

controls infrastructure based on services that aggregate
data from various sources and publish it in a way that fits
a control system environment. The services use the same
concepts as EPICS in general: services are published by
name and knowing the name, any EPICS client software
can use that service as if it was a traditional IOC, without
having to differentiate between services and IOCs in any
way.

__
#timo.korhonen@psi.ch

TUCOCB04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

956C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Figure 1: Architectural view of an EPICS 4 setup.

Structured Data
A module called pvData provides the support for data
structures instead of single scalar values or simple arrays.
With pvData one can create data containers where the
basic elements of data are units and structures. pvData
defines how the data are typed, interfaced and exchanged.
The types may be complex, and care is taken in memory
management and interfacing to make data I/O from
memory as high performance as possible. pvData
provides APIs for creating and updating pvData objects
and for accessing meta-data descriptions of the data
structures, the so called introspection interface.

pvData has four types of entities: scalar, scalarArray,
structure, and structureArray. Scalars are entities of
primitive data types, and scalarArrays are one-
dimensional arrays of those. Structures can contain scalar
types and further nested structures or arrays of structures.
All typical primitive data types like signed and unsigned
integers, single and double precision floating point
numbers, strings, boolean arrays, etc. are supported.

structure beamOrbit
 alarm_t alarmStatus
 int severity 0
 int status 0
 string message
 time_t timeStamp
 long secondsPastEpoch
 int nanoSeconds
 int userTag
 structure [] positionData

string bpmName
double zPos
double X
double Y
double I

Figure 2: A pvData structure example.

 Individual pieces of data can be combined to complex
structures of related data. For instance, combining the x,y
and intensity data from a beam position monitor into one
coherent set, or combining BPM readings from several

IOCs into a multidimensional array of positions (x,y,z)
that define a beam orbit (Figure 2).

Wire Protocol - pvAccess
A new protocol, pvAccess [3], supports the efficient

transfer of structured data over the network. It borrows a
number of concepts from its predecessor (ChannelAccess
[4]) like publishing a service name, name resolution with
broadcasts, etc., but adds a number of new features. In
addition to the traditional get, put and subscription
(monitor) operations, pvAccess also supports queries with
parameters (“channelRPC”) and a put-get operation where
after writing a value to a channel, a processed result is
returned to the caller.

As the data structures behind the channel are not
predefined, a client must find out the data structure via
introspection and create storage for the data structure
before it can ask data. At connection time introspection
information can be passed from server to client and each
side can create a data instance. The data is transferred
between these instances. The data transmitted on the
network does not have to be self describing since each
side has the introspection information, thus saving data
bandwidth.

To implement data services, the possibility to query
with parameters is essential. The "channel RPC"
operation is used for queries with parameters. For
instance, a client application in a pulsed accelerator could
request beam orbit data from a certain part of the machine
for a range of pulse numbers. In a channel RPC operation,
the query parameters are packed in a pvData structure and
the service again returns a structure. The query and return
structures are by convention of predefined types
(“Normative Types”) to make interoperation of
applications possible.

A "channel put-get" set of messages are used to set
(put) data to the channel and then immediately retrieve
data from the channel. Channels are usually "processed"
or "updated" by their host between put and get, so that the
get reflects changes in the process variable's state.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB04

Software Technology Evolution

ISBN 978-3-95450-139-7

957 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

PvAccess also provides queuing of monitored values
which had only a limited support in EPICS 3. The support
allows for configurable queue sizes and notifications to
the client if the buffers have overflowed.

Usage of network bandwidth is optimized by the
already mentioned separation of data and introspection,
sending in chunks to avoid large latencies and
preallocation of large buffers. In addition, pvAccess
supports transmission of only those parts of a data
structure that have changed.

Normative Types
EPICS 4 pvData is able to support unlimited types of

data structures. However, it is not possible for an
application to handle the data without knowing what the
data represents, which would make it impossible to write
generic applications like display managers. For that
reason a number of normative types [5] have been
defined. Each defines both a standard structure and its
semantics, i.e., what is the type intended to present. When
the structures have well-defined meanings, applications
can be written to process the data without knowing
anything about the source of that data. For instance a
display manager can format data of known types in a
meaningful way. Standard types also make it possible to
build processing chains by combining generic processing
elements; the elements can be software or processing
implemented in a FPGA or a GPU.

INTEROPERABILITY
A major concern in an upgrade of an infrastructure with

a big install base like EPICS is interoperability with the
previous versions. In this case between pvAccess and
Channel Access, plus the possibility to access IOC
database records from pvAccess clients.

Figure 3: Interoperability diagram of EPICS 3 and 4.

Channel Access clients can use the “classic”
infrastructure without any modification. They cannot of
course access any pure pvAccess facilities like services
that are not IOCs. On the other hand, pvAccess client API
includes both Channel Access and pvAccess as
"providers". That way, a single client library and API can
be used to communicate using both protocols.

PERFORMANCE
One very preliminary performance graph for pvAccess

floating point acquisition is shown below, together with
comparable Channel Access acquisition. The setup is
using C++ clients and servers doing GET operations, on a
double array value varying the value array size. This
result demonstrates the fact that pvAccess has been
optimized for large data transfers. Note that in addition to
raw network encoding and deserializing performance, in a
real world implementation pvAccess could achieve much
higher apparent performance since it additionally has the
capability to transfer only actually changed structure field
values [6].

Figure 4: Performance comparison of ChannelAccess and
pvAccess for a single channel acquisition.

SERVICES
The extensions in EPICS 4 enable support for several

types of services that add value to the control system
infrastructure by allowing easy integration of different
data sources to the system.

IOC Level – pvaSrv
As the record structure from EPICS 3 will not be

changed, a service providing access to the IOC records is
required. This service, called pvaSrv is a part of the V4
package. At the time of writing pvaSrv can access records
in the same way that Channel Access does, namely
connecting to a single field of a record and returning a
NT-type structure to the client. Work is underway to
extend pvaSrv to allow collecting values of multiple
EPICS Pvs into pvData structures. The collections can be
configured via configuration files or dynamically on the
fly via channelRPC calls. A proof-of-principle
implementation of this is already included in the release
version 4.3.0.

ChannelFinder
EPICS databases have a flat record namespace. While

direct access to primitive data enables the building of
lightweight controls applications without the overhead of
complicated structures, it makes it difficult to provide a
device-oriented view of the facility for high-level
applications. ChannelFinder [7,8] is a service that
provides a method to organize a flat list of channels into
structures and hierarchies, by attaching metadata

TUCOCB04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

958C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

(“properties” and “tags”) to the channels to describe their
function. A client application can query the service using
the properties and tags and get a list of corresponding
process variables. For example, a tag could describe all
channels belonging to a certain device, a further tag could
describe all devices of a certain function like focussing
quadrupoles.

Data Aggregation Service (Gather)
Another common requirement for building high level

applications is a service that aggregates data from several
sources into structures that are useful for client software.
In a large facility measurement values or control points
are usually located in distributed front-end IOCs. An
application that needs access to these values needs to
collect the data from several sources. Having a centralized
service is efficient as data collection is done only once
and the results served to many clients. In addition it also
makes management of the system much easier as the
client programs just need to ask the service for the data
instead of retrieving the values separately from each
involved IOC. A gather service can also combine static
data to the data entities it delivers, for example combining
the positions of monitors along the beamline with the live
data from the IOCs. At the moment only a prototype
implementation of a generic Gather service exists, but
such a service is planned, as well as application-
dependent Gather services for particular use cases like
serving a beam orbit.

Archive Service
As many institutes have and are still using the Channel

Archiver [9] for archiving control system data, creating a
service that gives access to archived data with standard
pvAccess client tools will give immediate value to those
sites. Archive data can be requested in the same way as
live data and possibly combined, to give an uninterrupted
view of the evaluation of a PV in time.

Saveset Service
Machine Snapshot and Retrieve (MASAR) is a service

for saving the values of a set of predefined channels,
comparing their values to the live machine data and
restoring them to the live system [8,10]. The service uses
the channelRPC method of communication.

Relational Database Services
A relational database service that returns pvData

structures has been implemented that listens on the
pvAccess to incoming requests. Internally the service has
a database table with names and corresponding predefined
SQL queries. The parameters in the query contain the
name for the query which is then executed by the server
and the results formatted and returned to the client as
NTTable structures.

SUMMARY AND OUTLOOK
The basic structures for EPICS 4 have been developed

and are nearing completion. First deployments are

underway and the results are very encouraging. EPICS 4
facilities have proven to provide an easy way of
integrating control system data with services that support
the needs and abstraction level of scientific applications.
Services infrastructure is starting to take shape, and
especially interesting prospects are developing in the
experiment support area. The services enable a whole new
range of applications, many of which will first be
developed in the coming years. The integration of EPICS
4 structures in data acquisition applications will take
EPICS into a whole new domain. EPICS version 4
provides a lot of new functionality while at the same time
preserving the functions and the ecosystem with drivers
and record structures of version 3. This enables a smooth
transition to the new version, which is important for the
large installation base of EPICS systems.

ACKNOWLEDGEMENT
Many people in the EPICS and wider controls

community outside the core developer group have
contributed to the success of this development by
reviewing the documents, participating in the discussion
and providing ideas and feedback. These and deserve our
sincerest thanks.

REFERENCES
[1] L.R.Dalesio, G.Carcassi, M.A.Davidsaver, M.R.Kraimer,

R.Lange, N.Malitsky, G.Shen, T.Korhonen,
J.Rowland,M.Sekoranja, G.White, “EPICS V4 Expands
Support to Physics application, Data Acquisition, and Data
Analysis” ICALEPCS’11, Grenoble, October 2011,
FRBHMULT06.

[2] M.Kraimer, “JAVAIOC ”, ICALEPCS'07, Knoxville,
October 2007, MOPB04.

[3] pvAccess Protocol Specification, http://epics-
pvdata.sourceforge.net/pvAccess_Protocol_Specification.
html

[4] Channel Access Reference Manual,
http://www.aps.anl.gov/epics/base/R3-14/12-
docs/CAref.html

[5] Normative Types Specification, http://epics-
pvdata.sourceforge.net/alpha/normativeTypes/normativeT
ypes.html

[6] EPICS Version 4 web site, http://www.epics-
pvdata.sourceforge.net

[7] “Device Definition and Composite Device Views on Top
of the Flat EPICS Namespace”, ICALEPCS'13,
TUCOCB05.

[8] “Development Progress of NSLS-II Accelerator Physics
High Level Applications”,Lingyun Yang, Jinhyuk Choi,
Yoshiteru Hidaka, Guobao Shen, Guimei Wang,
IPAC2012, New Orleans, USA, THPPR018.

[9] “Overview of the Experimental Physics and Industrial
Control System (EPICS) Channel Archiver”,
K.U.Kasemir, L.R. Dalesio, ICALEPCS'01, San Jose,
October 2001, THAP019.

[10] "NSLS II Middlelayer Services", Guobao Shen, Yong Hu,
Marty Kraimer, Shroff Kunal, Dejan Dezman,
 these proceedings, MOPPC155.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB04

Software Technology Evolution

ISBN 978-3-95450-139-7

959 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

