
MIDDLEWARE PROXY: A REQUEST-DRIVEN MESSAGING BROKER

FOR HIGH VOLUME DATA DISTRIBUTION

W. Sliwinski, I. Yastrebov, A. Dworak, CERN, Geneva, Switzerland

Abstract
Nowadays, all major infrastructures and data centres

(commercial and scientific) make an extensive use of the

publish-subscribe messaging paradigm, which helps to

decouple the message sender (publisher) from the

message receiver (consumer). This paradigm is also

heavily used in the CERN Accelerator Control system, in

Proxy broker - critical part of the Controls Middleware

(CMW) project. Proxy provides the aforementioned

publish-subscribe facility and also supports execution of

synchronous read and write operations. Moreover, it

enables service scalability and dramatically reduces the

network resources and overhead (CPU and memory) on

publisher machine, required to serve all subscriptions.

Proxy was developed in modern C++, using state of the

art programming techniques (e.g. Boost) and following

recommended software patterns for achieving low-latency

and high concurrency. The outstanding performance of

the Proxy infrastructure was confirmed during the last 3

years by delivering the high volume of LHC equipment

data to many critical systems. This work describes in

detail the Proxy architecture together with the lessons

learnt from operation and the plans for the future

evolution.

INTRODUCTION

Already in 2008, at the time when LHC accelerator

started the beam operation, it became evident that the

existing controls infrastructure was not capable to serve

the continuously increasing demands of many data

intensive applications. The front-end computers (FECs),

running the real-time LynxOS system, with 1 CPU and

limited memory, responsible for the control of equipment

and data acquisition, were the main source of a major

performance and scalability bottleneck. Therefore, the

Middleware team came with the proposal of introduction

of a Proxy server, which would decouple handling of

subscriptions to all interested users, decrease use of

resources on FECs and allow for better scalability of data

distribution channels. The Proxy infrastructure was

developed in close collaboration with equipment groups

and operation team and it was deployed for all major

equipment systems in LHC and partially for other CERN

accelerators.

REQUIREMENTS

The following technical requirements were defined for

the middleware Proxy:

• Proxy (acting as middle-tier server in peer-to-

peer environment) should be integrated

transparently into the control system, so that

client applications should not experience any

difference when operating directly with remote

device servers or via a Proxy. Moreover, it

must use the RDA2 [1] framework for the

client and server sides.

• As a middle-tier server, Proxy intercepts every

request coming from a client to device server

(Get, Set, Subscribe). This imposes very tight

constraints in terms of performance: Proxy

should not significantly impact performance of

the overall communication.

• The main Proxy responsibility is to decouple

publishers from subscribers for handling of

subscriptions. Proxy should implement

grouping of subscribers and broadcasting of

the subscription updates.

• Proxy architecture must be scalable and highly

concurrent to serve many independent clients

simultaneously.

• Asynchronous processing of the subscription

updates is required in order to guarantee non-

blocking communication, especially when

slow client consumers are present.

• Proxy should preserve ordering of the

subscription updates for each subscriber.

• Proxy must be integrated with the existing

Role-Based Access Control (RBAC) [2]

mechanism for the CERN control system.

• Proxy software may run permanently for very

long period without interruptions, therefore it

is important to provide advanced diagnostics

and monitoring capabilities in order to be able

to inspect its state at any time.

PROXY ARCHITECTURE

The development of Proxy started in 2008, when the

core part of the LHC control system was already in place.

It was built on top of the existing components and became

an integral part of the middleware infrastructure and the

CMW project.

Client applications operate remote devices either

directly (2-tier mode) or via middle-tier servers (3-tier

mode). Moreover, there can be several middle-tier servers

between a particular client and a device server.

Proxy supports two types of communication: request-

reply (Get and Set calls) and subscriptions (Subscribe

calls). Proxy acts as an intermediate component between a

client application and a device server, which controls

some physical equipment. Figure 1 shows the overall

architecture of the control system including Proxy

servers.

TUCOCB02 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

948C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Figure 1. Proxy in the control system

Request-Reply Channel

For the request-reply calls, Proxy performs additionally

several operations as described subsequently.

Figure 2. Proxy data flow for request-reply calls

When a client application sends a Get or Set request to

a certain device (1) it is handled by the Proxy server-side.

The server-side is based on the RDA2 library, which is

implemented on top of the omniORB product [3], i.e.

CORBA C++ ORB implementation. Currently, we use

thread-per-connection mode, which allocates one thread

per each physical client connection. A dedicated thread

handles all requests from the given connection (2). Proxy

inserts client token, used for device access authorization,

in the context of each request (3), such that the original

client token is propagated on “per-operation” basis. Next,

the request is sent synchronously to the device server,

where authorization and the final processing are

performed (4). The detailed data flow for request-reply

calls is depicted in Figure 2 above.

Subscription Channel

For the subscription calls, Proxy performs much more

additional processing. When a client requests to establish

a subscription (1), Proxy first performs grouping and

matching of the incoming subscription with the already

existing ones (2). This means that Proxy establishes at

most one physical subscription to the device server for a

given property and if there are several subscribers to the

same property, Proxy broadcasts subscription updates to

all of them when a new update arrives from the device

server. Therefore, when a client subscribes to a property,

for which there is already an established subscription,

Proxy adds the new subscriber to the existing group and

does not send the subscription request to the physical

device. This however means that new subscribers are not

guaranteed to receive so called “first-update” after the

subscription grouping, because the device server is not

aware of the new subscribers. In order to solve this issue

and always provide the first-update (3), Proxy performs a

Get call for the grouped subscription before further

processing of the request (4). After receiving the first-

update, Proxy sends it synchronously to the subscriber

and adds it to a particular group. Obviously for the first

subscription in the group handling is different: the first-

update step is not needed, since device server can provide

the first-update on its own. Instead, Proxy establishes

physical subscription to the device server using Proxy

authentication token (5). Server authorizes the

subscription request (6) using the provided Proxy token,

which should contain the CMW-PROXY role. As a

consequence, RBAC access rules for the servers behind a

Proxy must explicitly allow the CMW-PROXY role to

establish subscriptions. After a subscription is confirmed,

server periodically publishes updates to the listeners (7).

On the Proxy side, there is a dedicated dispatcher per each

client connection that contains message queue and a

dedicated processing thread. Each subscription update is

pushed into corresponding message queue (8) and

processed (delivered to the client) by dedicated dispatcher

thread (9). This architecture allows us to:

• Solve the “slow client” problem. If there are

slow consumers in the system, they do not

block other clients, because of a separate

message queue for each client;

• Preserve ordering of the subscription updates;

• Apply notifications drop policy for slow

consumers only;

 Client Client

CMW Proxy

Server

Client

omniORB threads

Server Server

Token ->

Context

omniORB

reference

[1]

[2]

[3]

[4]

omniORB

reference

CMW Proxy

Client

Middle tier

Client Client

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB02

Software Technology Evolution

ISBN 978-3-95450-139-7

949 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

• Have detailed statistics and diagnostics per

each client and each subscription.

Figure 3 depicts the data flow for subscription calls.

Figure 3. Proxy data flow for subscriptions

Configuration and Deployment

An important aspect for operational use of a service is

configuration support and ease of deployment.

Any device server, implemented using the RDA2

framework, can be accessed via a particular Proxy, thanks

to several configuration methods, which can be applied,

one at a time:

• Mapping through the Controls Configuration

Database [4] – this is the default approach,

which requires a given device server to be

mapped to a particular Proxy in the database.

One Proxy can be mapped to many device

servers, but a particular device server can be

mapped to at most one Proxy. This approach

provides full transparency for all involved

parties, i.e. client side, Proxy and device

server. The client calls are redirected via a

Proxy thanks to the CMW Directory service

resolution, which is based upon the latest

database mappings. This is also the preferred

way for running all operational Proxy

instances.

• Programmatic mapping using RDA2 API –

this approach can be used to override the

database mapping, when an explicit Proxy

server name is known in advance (e.g.

command line argument or configuration

file). It is used in the continuous integration

environment, where different types of

redirections are tested.

• Mapping through the system properties – this

approach is most often used in test setup,

when both previously described

configurations (database driven and

programmatic) have to be overridden

temporarily for a test purpose. It can be also

used during the integration testing of several

controls components.

Having in place several ways to configure device server

to Proxy mapping, allows for a non-intrusive deployment

of new Proxy servers even during the beam operation.

Access Control

Proxy servers act as an intermediary layer between

clients and actual device servers. The major security issue

in this model is how to enforce the access control for

subscriptions.

In order to address this problem authentication for

Proxies was introduced. The purpose of authentication is

to verify the digital identity of a principal. If the

authentication process succeeds, its result is a digitally

signed authentication token that is returned to the

application. The token is a short-term uniform substitute

of the real credentials. It is issued by the central

authentication server, which can reliably verify the user’s

identity [5]. At start-up, each Proxy performs

authentication by location, without using explicit

credentials and obtains a token that contains the CMW-

PROXY role. RBAC access rules for devices working

behind a Proxy must allow the client subscriptions on

desired properties for that role. This approach has several

advantages. First, being very simple, efficient and non-

intrusive, it enforces access control in a single place.

Second, it helps equipment specialists to impose usage of

a Proxy for certain device servers thus preventing direct

client access and limiting the performance problems [2].

Diagnostics and Monitoring

For diagnostics and monitoring of any CMW server a

dedicated GUI application was developed, called CMW

Admin, that can query any server for information about

its state. Proxy is a CMW server inherently and it also

exposes common properties, e.g.: configuration, state,

logging, connected clients, etc. Additionally, it exposes

specific administrative properties to monitor:

• State of each grouped subscription - this

property reports detailed information about

grouped subscription, status of each

subscriber, number of updates and timestamp

of the last subscription update.

• State of each connected client together with

state of the allocated thread and message

queue for that client.

Figure 4 presents the detailed diagnostic view of the

grouped subscriptions together with related information

about the subscribed clients.

 Client

CMW Proxy

Server

Client

omniORB threads

Server

omniORB

reference

[1]

[3]

[4]

ClientDispatcher

[5]

[6]

[9]

Grouping

First update

Proxy token

[2]

[7]

[8]

TUCOCB02 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

950C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Figure 4. Proxy diagnostic view in CMW Admin GUI

STATUS OF THE PROJECT

Proxy was successfully deployed and commissioned in

LHC operation in 2009. The system passed many

centrally organized tests. The feasibility, performance and

overhead of using Proxy were experimentally evaluated.

The results show that the overhead is acceptable and the

chosen approach can be effectively used in the CERN

control system.

Currently there are 26 operational Proxy servers and

additionally 2 instances running in the test environment,

i.e. the Controls Testbed [5]. Test configuration allows us

to perform integration testing without interaction with the

production environment. The outstanding performance of

the Proxy infrastructure was confirmed during the last 3

years by delivering high volume of LHC equipment data

to many critical systems. As a result, even the constrained

front-end computers, operating with limited resources,

were able to deliver data to many critical applications,

which was not possible before introduction of the Proxy.

Nevertheless, there are still few areas, where current

implementation can be improved and extended in order to

expand the area of its applicability.

Limitations

Proxy was built on top of the existing infrastructure:

RDA2 and RBAC. Proxy development started when those

components were already implemented and we could not

change API and architecture of the mentioned libraries.

As a consequence, there are several limitations with the

current version of Proxy.

First important limitation is copy overhead. For each

incoming request Proxy does deserialization from the

network representation into Data object, which is then

serialized again into the network form. This conversion is

not necessary, since Proxy does not change the data (it

may change only context) but it is expensive.

Performance analysis showed that Proxy wastes around

50% of CPU time doing this data transformations.

Another limitation is the lack of support for permanent

subscriptions done via Proxy with client authentication

token. The workaround is to always establish subscription

through Proxy with Proxy’s authentication token. As a

consequence access rules of the device servers behind the

Proxy must be modified in order to support authorization

of the middle-tier Proxy server.

FUTURE PLANS

The most important objective for Proxy in 2013/2014 is

integration with the new RDA3 framework [7]. The new

Proxy version will allow for communication between

clients, both RDA2 (based on CORBA) and RDA3 (based

on ZeroMQ), and RDA3 device servers. This would help

to organise a smooth introduction of the new RDA3

device servers without changing immediately code of the

client applications. The new RDA3 provides better

integration with RBAC and abstractions for building

middle-tier services like Proxies.

In the next major Proxy version we plan to optimize the

performance, to make the product more scalable, reliable

and responsive. Our goal is to remove unnecessary copy

overhead by avoiding expensive serialization and

deserialization thanks to the architecture of the new

RDA3. We also plan to achieve better integration with the

access control mechanism in order to:

• Get rid of “Proxy RBAC token” and perform

all the communication using clients token;

• Eliminate the need to modify access rules on

the device server side to allow going through a

Proxy;

• Make communication fully transparent by

using advanced session mechanism, so that

server knows all of its clients, even if they are

connected via a Proxy.

REFERENCES

[1] N. Trofimov et al., “Remote Device Access in the

new CERN Accelerator Controls middleware”,

ICALEPCS’01, San Jose, California, USA.

[2] I. Yastrebov et al., “Status of the RBAC

infrastructure and lessons learnt from its deployment

in LHC”, ICALEPCS’11, Grenoble, France.

[3] omniORB: http://omniorb.sourceforge.net

[4] Z. Zaharieva et al., “Database Foundation for the

Configuration Management of the CERN Accelerator

Controls System", ICALEPCS'11, Grenoble, France.

[5] A. Petrov et al., “User Authentication for Role-Based

Access Control”, ICALEPCS’07, Knoxville,

Tennessee, USA.

[6] J. Nguyen Xuan et al., “Testbed for Validating the

LHC Controls System Core Before Deployment”,

ICALEPCS’11, Grenoble, France.

[7] A. Dworak et al, “Middleware trends and market

leaders 2011”, ICALEPCS’11, Grenoble, France.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB02

Software Technology Evolution

ISBN 978-3-95450-139-7

951 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

