
EVALUATION OF ISSUE TRACKING AND PROJECT MANAGEMENT
TOOLS FOR USE ACROSS ALL CSIRO RADIO TELESCOPE

FACILITIES

J.C. Guzman, CSIRO Astronomy and Space Science, Epping, Australia

Abstract
CSIRO's radio astronomy observatories are collectively

known as the Australia Telescope National Facility, or
ATNF. The ATNF is operated and managed by CSIRO
Astronomy and Space Science, a division of CSIRO,
Australia's national science agency. The facilities include
the 64-metre dish at Parkes, the Australia Telescope
Compact Array (ATCA) located in Narrabri, the Mopra
22-metre dish near Coonabarabran and the ASKAP
telescope located in Western Australia and in early stages
of commissioning. In early 2013 a new group named
Software and Computing has been formed. This group,
part of the ATNF Operations Program is responsible for
the software development and maintenance for all ATNF
facilities, from monitoring and control systems to science
data processing and archiving. The new group brings all
the expertise in software development, data processing,
High-Performance Computing (HPC) and data archiving
under one umbrella. One of the first tasks of the new
group is to start "standardizing" the way software
development is done across all radio telescopes. This
paper presents the results of the evaluation of several
issue tracking and project management tools, including
Redmine and JIRA to be used as a common software
development management tool across all ATNF facilities.
This paper also describes how these tools can potentially
be used for non-software type of applications such as
fault reporting and tracking system.

MOTIVATION
The current ATNF Fault Report System has been in use

since 1998 for the Parkes telescope and since 2001 for the
Compact Array and Mopra. A single developer currently
spending approximately 5 to 10 days per year maintains
the system. The software is relatively simple providing
basic fault tracking functionality and search capabilities.
The client side is entirely via Web and accessed via ATNF
website. The system supports multiple telescopes (or
sites) and several categories (but no support for sub-
categories). Despite its simplicity, the current system has
many limitations raised by several users. These issues,
and the need to support the new ASKAP telescope,
triggered a review of the current system and evaluation of
off-the-shelf alternatives. An internal draft report [1] was
released in early September 2013 to the Operations
management and users for consultation. An updated
version of this report is currently in progress.

The ATNF also maintains two other project
management tools (for historical reasons) used by
different groups across the division:

• Trac [2] used by the Computing Infrastructure
team to track UNIX system administration tasks.
There are also several software projects for Parkes,
ATCA and Mopra in Trac supporting internal and
external users.

• Redmine [3] is used mainly by the ASKAP project,
including the ASKAP software development
project, system engineering and commissioning,
and hardware development. There is also a
Redmine instance supporting Science projects for
internal and external users.

Since the merge of the two software development
teams into a single group earlier in 2013, it is evident that
using a single issue-tracking system to track all software
maintenance and development tasks for all ATNF
telescope systems is paramount. Homogenising processes
and tools brings several benefits to the organisation,
including easier maintenance costs of the tools, better
management (assignment) of tasks across many projects
and individuals located at different sites (distributed
geographically), more visibility of the tasks to be
completed and better management of software releases.

This paper describes the results of the analysis and
evaluation of off-the-shelf issue-tracking tools that can be
used as a Fault Report System (or Support System) and a
software development management tool.

REQUIREMENTS
The Fault Tracking and Reporting System requirements

captured in [1] are very similar to what is provided by a
Helpdesk or Support tracking system. There are
additional requirements to support software development
and maintenance activities. A list of requirements for an
issue-tracking tool that can be used as a Fault Tracking
and Reporting system and as a software development and
maintenance system are listed below. An issue can be a
bug, system fault, task, and general or feature request.
• Track Issues, including creating issues by an internal

or external user, assign issues to an individual or a
group, add comments or work logs by internal or
external users via provided UI (optionally via email),
add attachments, link related issues, change issue
states (open, in progress, etc.), change issue’s
priority

• Email notification
• Support for watchers
• Support for multiple telescopes (projects)
• Custom categories and sub-categories
• Custom fields
• Custom workflows
• Administration of user and groups

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOBAB04

Project Management and Collaboration

ISBN 978-3-95450-139-7

509 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

• Access security
• Application Programmatic Interface (API) to

create/modify existing web user interfaces
• Support for importing from other issue-tracking

systems, at least the Comma-Separated Values
(CSV) format

• Search issues using common queries, such as
unassigned and open issues, unresolved issues per
telescope, category and/or sub-category, by
keywords in the description text or in the work log
for comments

• Search issues using custom query
• Basic reporting, including: estimated observing time

lost for a specified period of time, and issue statistics
• Provide custom reports
• Integration with revision control system, including

subversion and git
• Code statistics and visualisation
• Group and track issues into milestones and versions
• Generate release notes
• Integration with wiki tool
• Web-based user interface
• Multi-platform (server side)
• Easy and intuitive to use
• Easy to install, administer and maintain

IMPLEMENTATION OPTIONS
There are many commercial and open source issue-

tracking tools currently available as listed in [4]. Out of
all the available commercial and open source issue-
tracking tools, the author selected two candidates:
Redmine and JIRA [5] for further evaluation. Redmine
has been chosen because it has been already in used in
our division mainly by the ASKAP project (including
Software development). JIRA was chosen because it is
used in other astronomical and high-energy physics
facilities as well as in other divisions of CSIRO.

Redmine
Redmine is one of the most popular open source

flexible project management systems. Written using the
Ruby on Rails framework, it is cross-platform and cross-
database. Redmine is released under the terms of
the General Public License (GPL) version 2. A detailed
list of supported features can be found in [3].

Advantages of Redmine:
• In use in ASKAP for many years so ASKAP staff

are very familiar with the tool.
• Supports multiple projects arranged in a

hierarchical structure, i.e. projects, sub-projects,
sub-sub-projects, etc. However highly nested
project structures can be quite complex and
perhaps confusing.

• Has an in-built wiki per project.
• Highly flexible without code development.
• Good search capability.

• Provides a REST API for developing custom web
applications accessing the Redmine database.

• No license fee.
Disadvantages of Redmine:
• Some users complained about its “bland” and less

intuitive user interface compared to JIRA.
• Smaller user base compared to JIRA.
• Although there is an external plugin available,

there are not many documented cases where
Redmine has been used as a helpdesk/support
ticketing systems.

• Only basic reporting (time spent) available off-the-
shelf. More complex reporting can be added via
external plug-ins (if available) or by creating your
own plugins (requires Ruby on Rails programming
skills).

• There is a plug-in available to support sub-
categories [4] but the author did not have time to
test it.

Worth noting that in 2010 Redmine project was forked
by a group of ex-Redmine developers and formed
ChilliProject [6], a competitor of Redmine. This could
potentially raise questions about the health and stability
of the project. However there have been 38 releases since
February 2011 going from 1.1.1 to 2.4.0 current. Hardly a
sign that the Redmine project is somehow dying.

JIRA
JIRA is a commercial software product, developed

by Attlassian Inc., and used for issue tracking and project
management. The product name, JIRA, is not an acronym
but rather a truncation of "Gojira", the Japanese name for
Godzilla. It has been developed since 2002. JIRA is
written in Java. It integrates with source control programs
such as Subversion and git. JIRA's flexible plugin
architecture spawned a large number of plugins
developed by the JIRA development community and third
parties, including IDEs like Eclipse using the Atlassian
IDE Connector. The JIRA API allows developers to
integrate third-party applications into JIRA. There are
hundreds of available plugins that extends JIRA in the
Attlassian Marketplace website [7]. Plugins are available
both for free and licensed.

JIRA has many similar features as an issue-tracking
and project management tool as Redmine. The full list of
JIRA features can be found in [5]. Some of the
differences between JIRA and Redmine are listed below:
• JIRA supports multiple projects and provides

grouping of projects in “project categories” but
does not support nested hierarchical project
structure like Redmine.

• Redmine has the wiki and some tools to assist
software development out-of-the box. JIRA on the
other hand only provides the issue management
part. Wiki (Confluence [8]) and other software
development add-ons are available for purchase.

TUCOBAB04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

510C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Management and Collaboration

• JIRA maintains the resolution of the issue (fixed,
won’t fix, duplicate, incomplete, cannot reproduce)
as a separate in-built field.

• JIRA support voting of issues.
• JIRA has additional and more comprehensive time

tracking fields such as updated, resolved, original
estimate and remaining estimate times. These
times are recorded separately and available for
easy reporting.

• JIRA contains several pre-built reports. Redmine
only offers time spent report out-of-the-box.

Advantages of JIRA:
• Very intuitive and easy to use user interface.
• Better user and developers documentation

compared to Redmine.
• Better customization of the dashboard compared to

Redmine.
• Larger user base compared to Redmine.
• Issue collector and/or user feedback plug-in (web

embedded).
• Highly flexible without code development.
• REST API available for integrating with our

existing Web user interface.
• Several built-in reports available.
• Lots of plugin extensions available (free and

commercial).
Disadvantages of JIRA:
• Moderate license fee. JIRA license model charges

per user, approximately $40 per user if JIRA is
running on your premises.

• Wiki (Confluence) and software tools have to be
purchased separately.

• Additional cost to ATNF of migrating part (or
entire) existing Redmine to JIRA.

COMPARISON RESULTS
Table 1 presents a comparison between JIRA (version

5.2) and Redmine (version 2.3.2). The scores are based on
the author’s analysis of the off-the-shelf documentation
([9], [10], [11]) and having “played” with trial versions of
both. The meaning of each scoring value is listed below:
• Score 5 = fully supported and verified in the trial

versions
• Score 4 = fully supported according to the

documentation but not verified in trial version; or
fully supported and verified but with some
constraints

• Score 3 = supported but more effort in
customisation or some code might be required to
achieve the requirement in full

• Score 2 = not currently supported, but it is possible
to extend with significant code effort

• Score 1 = not supported at all and it is not possible
to extend via some coding effort

Table 1: Comparison between JIRA and Redmine

Requirement JIRA
5.2

Redmine
2.3.2

Track issues 5 5
Email notification (a) 4 4
Support for watchers 5 5
Support for multiple projects 5 5
Custom categories and sub-
categories (b)

5 4

Custom fields 5 5
Custom workflows (c) 5 4
Administration of user and
groups

5 5

Access security 5 5
API 5 5
Search faults using common
queries

5 5

Search faults using custom
query

5 5

Basic reporting (d) 5 3
Provide custom reports (e) 4 3
Import from other issue tracking
system (CVS format) (f)

4 4

Integration with revision control
system, including subversion
and git

4 4

Code statistics and visualisation
(g)

4 3

Group and track issues into
milestones and versions

5 5

Generate release notes (h) 4 4
Integration with wiki tool (i) 5 5
Web-based user interface 5 5
Multi-platform (server-side) 5 5
Easy and intuitive to use (j) 4 3
Easy to install, administer and
maintain

5 5

User, administration and
programmer’s documentation
(k)

5 3

TOTAL 118 109

(a) Both JIRA and Redmine support creating and

updating issues via email. However it requires
setting up your email server, which was not done
during the trial period.

(b) Redmine supports sub-categories via the
following plugin
https://github.com/bpat1434/redmine_category_t
ree. The author did not verify this plugin.

(c) JIRA provides a graphical workflow editor.
(d) JIRA has many built-in reports compared to

Redmine. Redmine only offers time-spent
reports.

(e) JIRA provides a tutorial how to create a report
but the author did not verified in the trial
version. Redmine does not provide specific

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOBAB04

Project Management and Collaboration

ISBN 978-3-95450-139-7

511 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

tutorial on custom reporting, but there are plenty
of documentation how to create a plugin.

(f) Both tools provide external tools that import
data from existing issues tracking systems,
including from CVS format files. The author did
not try these tools and cannot confirm how good
they are.

(g) JIRA requires the additional product FishEye
[12]. FishEye has a very nice UI compared to
Redmine built-in code statistics.

(h) For Redmine, there is a plugin that provides this
functionality:
https://github.com/hdgarrood/redmine_release_n
otes.

(i) To complement JIRA, the Attlassian product
Confluence provides enterprise wiki. It has a
WYSIWYG editor and provides content
structure. Redmine has a built-in wiki, but it is
rather limited, in particular when structured
content is required. There is a plugin that
provides a WYSIWYG editor.

(j) The author undertook a survey amongst several
users (20 respondents) and these are the
averaged scores.

(k) JIRA documentation is quite comprehensive and
easy to navigate compared to Redmine.

CONCLUSIONS
As seen in the Table 1, both JIRA and Redmine

provide all the essential requirements to be used as a
Fault Tracking and Reporting system for ATNF
telescopes. The internal report recommends that the
existing Fault Report system should be replaced by one of
these off-the-shelf alternatives, because maintaining in-
house code is usually expensive in the long run if an off-
the-shelf can be used instead. The difficult question is
which one.

The results from Table 1 shows that JIRA is slightly
better than Redmine, especially in the area of reporting,
look and feel, user documentation, more case studies as a
Helpdesk system and more experience in the astronomical
and high-energy physics community. JIRA is also
supported by CSIRO corporate IT division and used in
some of their projects. For these reasons, the draft version
of the internal report recommended JIRA to be used as
the ATNF Fault Tracking and Report System. However,
Redmine is currently being used in our division, mainly
in the ASKAP project and there will be costs associated
in migrating existing Redmine projects into JIRA,
although it is not yet clear if all the Redmine projects
have to be moved.

A decision has not been made yet at the time of writing
this paper. A round of staff consultation, especially the
ones that will be affected by the change are currently on
going. The report is also being expanded to include an
analysis of the impact of making JIRA or Redmine the
single issue-tracking tool for the whole division, and

possible implementation options. It is envisage that a
decision will be made by the end of October 2013.

Both JIRA and Redmine provide all the essential
requirements for an issue-tracking and project
management tool. Despite a decision in the ATNF
division not been made yet, these are some of the author’s
thoughts and suggestions for people looking or evaluating
issue-tracking tools:
• Use one; it will make your life as a developer or

manager easier.
• If you are a single developer or a small software

development team starting a new project that
prefers an open source alternative consider
evaluating or using Redmine, especially if you are
looking after a tool that supports multiple projects
and software development or maintenance
workflows.

• For larger projects or teams and if you don’t mind
spending a modest license fee, consider using or
evaluating JIRA. JIRA has a nicer UI, better
reporting features (appeals more to managers)
compared to Redmine. It has a larger user base and
supports many different workflows from
Helpdesk-type system to software development
projects. Bear in mind that if you need a wiki, you
will have to consider Confluence to complement
JIRA (additional cost). For software development
projects, it is also recommended to add some of the
tools that complements JIRA, especially FishEye.

The analysis and comparison results described in this
paper were done with JIRA 5.2 and Redmine 2.3.2, so
bear in mind that features provided by both tools might
have changed by the time you read this paper, so consult
the corresponding vendors for up-to-date information.

REFERENCES
[1] J.C.Guzman, ATNF Fault Report and Tracking

System (FRTS) Requirements Specifications and
Implementation Options, Draft version 0.1, Sep 2013
(CSIRO internal only).

[2] http://trac.edgewall.org
[3] http://www.redmine.org
[4] Comparison of issue tracking systems;

http://en.wikipedia.org
[5] https://www.atlassian.com/software/jira
[6] https://www.chiliproject.org
[7] https://marketplace.atlassian.com
[8] https://www.atlassian.com/software/confluence
[9] JIRA 5.2 Online Documentation,

https://confluence.atlassian.com/display/JIRA052/JI
RA+Documentation.

[10] Andrew Lesyuk. Mastering Redmine. Packt
Publishing, 2013.

[11] Patrick Li. JIRA 5.2 Essentials. Packt Publishing,
2013.

[12] https://www.atlassian.com/software/fisheye/overview

TUCOBAB04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

512C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Management and Collaboration

