
UTILIZING ATLASSIAN JIRA FOR LARGE-SCALE SOFTWARE
DEVELOPMENT MANAGEMENT*

J. Fisher, D. Koning, A.P. Ludwigsen, LLNL, Livermore, CA 94550, U.S.A.

Abstract
Used actively by the National Ignition Facility (NIF)

[1] since 2004, the JIRA issue tracking system from
Atlassian is now used for 63 different projects. NIF
software developers and customers have created over
80,000 requests (issues) for new features and bug fixes.
The largest NIF software project in JIRA is the Integrated
Computer Control system (ICCS), with nearly 40,000
issues. In this paper, we’ll discuss how JIRA has been
customized to meet our software development process
[2]. The ICCS software team developed a custom
workflow in JIRA for tracking code reviews, recording
both developer and quality control team test results, and
managing product releases. JIRA’s advanced
customization capability has proven to be useful in
tracking key metrics about ICCS development effort (e.g.
developer workload). ICCS developers store software in a
configuration management tool called AccuRev, and
document all software changes in each JIRA issue.
Specialized tools developed by the NIF Configuration
Management (CM) team analyse each software product
release, insuring that each software product release
contains only the expected changes.

JIRA HISTORY
JIRA is an issue tracking system developed by

Atlassian Corporation starting in 2002. It is most
commonly used for software bug tracking, but thanks to
its advanced customization features, is highly suitable for
other types of ticketing systems (work orders, help desks,
etc.), and project management.

NIF ICCS began using JIRA in 2006 for tracking
software development. Prior to that, a locally developed
tracking system was used. While sufficient during the
early development of ICCS, limitations in functionality
and development resources encouraged migration to a
more advanced toolset. Fortunately, JIRA provided a
number of data migration tools, so data was easily
transferred. The ICCS team has successfully maintained a
complete history of product software modifications since
its origin.

Today the NIF employs JIRA for tracking many
software development projects including the ICCS and
also for other needs such as IT work orders, and high
level requirements.

SOFTWARE DEVELOPMENT TRACKING
JIRA provides a mature, powerful toolset for local

customizations to meet specific project needs. This

includes custom fields, issue types, workflows,
notifications, and user entry screens.

NIF originally adopted a custom software development
workflow modelled on good industry practices. It
included distinct phases for software development and
quality control. In spring 2013, the workflow was
modified to be more agile, allowing for the testing of
software changes during earlier phases of software
development.

All software changes require a JIRA issue. This
includes not just bug fixes, but enhancements and new
features. In fact, documentation in JIRA issues is used as
a basis for all end-user release documentation. In
addition, database changes (in particular configuration
data), code reviews, and design reviews are tracked with
JIRA.

When a JIRA issue is first entered into the system, the
reporter specifies the software project and the issue type
(Enhancement, Change, or Problem). From here, the
initial set of JIRA fields is entered, as listed in Table 1.

Table 1: JIRA Fields Used by Reporter

Field Name Description

Summary A one-line description of the request

Priority Urgent, Important, Normal, or Low. Urgent
issues may be handled as patch releases

Component The product within the project, chosen from
a project-specific list

Category Software, Operational Data, Infrastructure,
Documentation.

Description A freeform text field describing the request

Affects
Versions

What software version this request relates to

Environment Where the issue manifests (main facility, side
lab, etc.)

Origin Design Review, Coding, Developer Unit
Test, Operations, Offline Tests, etc.

Reporter Who requested the change (auto filled)

Recommend-
ation

If a particular fix is needed, it can be
specified here

Locos # A ticket reference to the NIF Operations
Problem Log system (not JIRA-based)

Wrap-around A flag indicating that this was a data change
that originated in the production
environment.

*This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. #LLNL-ABS-632634, #LLNL-CONF-644176

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOBAB03

Project Management and Collaboration

ISBN 978-3-95450-139-7

505 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 1: The NIF Software Engineering JIRA workflow, used by over 60 different software projects.

When an issue is submitted, the team lead associated

with the specified component automatically receives a
notification email, and becomes the default assignee.
Figure 1 depicts the workflow for all software issues,
where the boxes are states and the arrows are transitions.

When each transition occurs, the Reporter (and
designated watchers) will receive a notification email.
The team lead has the responsibility of triaging these
incoming JIRA issues with the Assign Issue transition
(which includes an assignment to a developer). The
assignee will receive an email notification of the
assignment. The Start Progress transition is used once
work begins. When work is completed (including unit
testing), via the Complete Work transition, the Quality
Control phases can begin.

QUALITY ASSURANCE
Several quality assurance phases are employed for all

JIRA issues:
 Design Reviews
 Code Reviews
 Desk Checks
 Quality Control

Whether (and when) each of these steps take place
depends on the nature of the JIRA issue, as described
below.

Design and Code Reviews
Review teams perform design and code reviews for

significantly complex software efforts. Design reviews of
course should be done prior to the start of coding.

Reviews are expected for:
 Fundamentally new software designs (e.g. a new

framework or use of new Commercial Off-the-Shelf
(COTS)

 Fundamentally new functionality (e.g. a new
subsystem or complex algorithm)

 Software with significant risk or impact
 Existing software that has encountered a significant

failure
The code reviewers will typically include those with

strong technical background in the area. Design reviewers
will additionally include customers, and software testers.
One or two software developers who are not familiar with
the technical area are also encouraged as reviewers, since
design and code reviews are an excellent means of cross
training.

The need for a formal review is assessed by the
component lead, or by higher level management. Distinct
JIRA issues are created for these reviews (linked to the
JIRA issue for the actual coding) and used to store the
review results. These JIRA issues are associated with a
software release (and go through Figure 1 workflow),
allowing project managers to insure that all appropriate
formal reviews have been done.

TUCOBAB03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

506C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Management and Collaboration

Desk Checks
Every JIRA issue requires a desk check by secondary

developer. The goal of a desk check is to make certain the
work was performed correctly, including the following:

 The JIRA issue Release Notes contains a list of all
affected files and their version numbers

 The JIRA issue Resolution Notes contains
appropriate test criteria, and the results of the unit
test as done by the developer

 The JIRA issue End User Notes and Processes to
Restart fields are filled in properly

 The code implements the requirements and design as
specified in the description

 The code conforms to existing architecture,
framework, and coding standards

 The code is robust, with appropriate concurrency,
exception handling, and commenting

 The impacted software deliverables have been
correctly constructed and placed under the
configuration management

It the desk checker verifies the criteria (listed above)
are met, then the desk check can pass. For substantially
complex or large code changes, a formal code review may
be requested. In some cases, if minor, non-critical issues
are found, the desk checker may pass the desk check and
create an additional JIRA issue to resolve these at a later
time.

Software Testing
As shown in Figure 1, all JIRA issues reach a “Ready

for Test” status. Based on the nature of the software
changes, JIRA issues may be tested with various levels of
rigor, as specified by the Final Verification Environment
(FVE) field. The FVE field choices include Development,
Integration, Formal Test, and Production. The JIRA field
QA Verifier specifies the person who will perform the
software test, and changes the JIRA issue status to Test
Passed or Test Failed.

Very few JIRA issues have an FVE of Development.
This is mostly for changes that can only be verified by
code inspection (such as an improvement in code
commenting).

Each major ICCS release contains a variety of new
features and bug fixes across many different subsystems.
During the early development stages, individual
developers are expected to perform appropriate unit
testing. As a release gets close to completion, the
repository is locked, and the testing emphasis switches to
how all the various code changes work together as an
ensemble.

Interface changes, database schema changes, and most
importantly the ICCS Experiment Automation System
(EAS) all need to be verified during integration testing.
The developers themselves perform this step for all JIRA
issues with an FVE of Integration, led by an Integration
Lead. A formal software release is not actually created by
the CM team at this point; rather, developers can (with
Integration Lead approval) promote code into the

development code tree to address problems found during
the integration testing.

JIRA issues that are substantially impactful, or require
specialized hardware are given FVE values of Formal
Test or Production. Once all Integration testing has been
performed, the CM team generates a software release, and
delivers the code to the Formal Test environment. A
dedicated team of Software Quality Control experts, in a
dedicated lab, then verify those software changes. For
certain changes, the NIF itself (“Production”) is the only
appropriate place to validate a software change.
Dedicated on-line regression testing and integrated shot
testing is performed for all software releases to the NIF.

CONFIGURATION MANAGEMENT
The ICCS project uses AccuRev (developed by a

company of the same name) as a software version control
system. AccuRev’s stream-based architecture provides
automatic merging and inheriting between code streams;
it has significantly improved the efficiency of the
development and CM teams, over CVS, the previous
version control system used.

The CM team has developed mechanisms for
connecting AccuRev with JIRA, to allow easier
documentation of code changes. After completing a code
change, the software developer enters the JIRA issue ID
into the AccuRev software commit comments dialog
(along with other details). Through a web page the
developer can then input the JIRA issue ID, and generate
a complete list of all code changes corresponding to that
JIRA issue. This list is then pasted into the JIRA issue
Release Notes, as shown in Figure 2. The desk checker
uses the field as a guide when reviewing an issue.

LIMITATIONS AND WORKAROUNDS
Over time, ICCS has confronted some limitations of

JIRA, as described below.

Field-level Permissions
JIRA has no ability to control editing of specific fields

within a JIRA issue. If a field is available on an entry
screen, then it can be edited by any user with permission
to edit that JIRA issue. Some of the custom fields in a
JIRA issue (such as those used for tracking purposes by
the CM team, or Integration Leads) should only be edited
by specific users or groups of users.

Figure 2: An example of specific software changes made
in AccuRev, as documented in the JIRA Release Notes.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOBAB03

Project Management and Collaboration

ISBN 978-3-95450-139-7

507 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Fortunately, every change made to a JIRA issue is
documented through a change history, so should a field
value be inappropriately set, details of how and why can
be inspected.

Workload and Release Tracking
ICCS puts out about five major releases per year, each

comprising on average 200 software change requests.
Patches to deployed releases occur on a more frequent
basis to fix urgent issues. Given the significant level of
coordination with the NIF to schedule releases, timely
delivery and detailed tracking of development and testing
is critical.

To aid in a more detailed tracking of software releases,
ICCS leverages external tools to mine the JIRA database.

Figure 3 illustrates release tracking through Microsoft
Excel. Twice a week, the Integration Leads gather and
plot the current issue counts for each release (resolved,
desk checked, integration tested, and QA tested). While
JIRA provides great tools for “current” status, Excel is
required to plot historical trends and identify completion
rate problems.

For a more detailed analysis of a software release,
based on actual time estimates, an interactive dashboard is
used as shown in Figure 4, using SQL queries and the
Splunk big data analysis tool. The figure depicts a user’s
drilldown from the top graph to workload for the 13.4.0.1
software release, then to the workload for a specific
developer. This ability to navigate through multiple
graphs into specific workload details is beyond the
current capabilities of JIRA.

FUTURE PLANS
The following improvements are planned:
 Upgrade from JIRA 4.1.1 to 6.0
 Migrate JIRA database from MySQL to Oracle
 Migrate JIRA from a bare metal server to a Virtual

Machine Operating System (VMOS).

 Upgrade AccuRev’s AccuSync JIRA server and
AccuRev (to 6.0) to simplify and improve AccuRev
and JIRA integration.

 Automate frequent JIRA workflow tasks, such as
CM release field updates using JIRA REST APIs.

CONCLUSION
With nearly eight years’ experience with JIRA, ICCS

has highly leveraged its many capabilities. Filtering and
dashboards are used daily by all team members to track
personal workload. The powerful search engine and
change history allows quick access to what and when
changes occurred in the ICCS software codebase. Where
limitations have been encountered in JIRA, its open data
interfaces have made it relatively straightforward to
leverage external analysis tools.

REFERENCES
[1] P. Van Arsdall, et al, “National Ignition Facility Project

Completion and Control System Status,” ICALEPCS’09,
Kobe, Japan, Oct 2009, TUP078, p. 260 (2009);
http://www.JACoW.org.

[2] A. P. Ludwigsen, et al, “Software Engineering Processes
Used to Develop the NIF Integrated Computer Control
System,” ICALEPCS’07, Knoxville, Tennessee, USA, Oct.
2007, ROAB01, p. 500 (2007); http://www.JACoW.org

Figure 3: Tracking completion of the ICCS 13.4.0
software release, using Excel.

Figure 4: Splunk is used to provide drill-down dashboard
capabilities beyond what can be done with JIRA’s built-in
dashboards.

TUCOBAB03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

508C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Management and Collaboration

