
ANALYZING OFF-NORMALS IN LARGE DISTRIBUTED CONTROL
SYSTEMS USING DEEP PACKET INSPECTION AND DATA MINING

TECHNIQUES*
M. Fedorov, G. Brunton, C. Estes, J. Fisher, C. Marshall, E. Stout

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550, USA

Abstract
Network packet inspection using port mirroring

provides the ultimate tool for understanding complex
behaviors in large distributed control systems. The
timestamped captures of network packets embody the full
spectrum of protocol layers and uncover intricate and
surprising interactions. No other tool is capable of
penetrating through the layers of software and hardware
abstractions to allow the researcher to analyze an
integrated system composed of various operating systems,
closed-source embedded controllers, software libraries
and middleware. Being completely passive, the packet
inspection does not modify the timings or behaviors. The
completeness and fine resolution of the network captures
present an analysis challenge, due to huge data volumes
and difficulty of determining what constitutes the signal
and noise in each situation. We discuss the development
of a deep packet inspection toolchain and application of
the R language for data mining and visualization. We
present case studies demonstrating off-normal analysis in
a distributed real-time control system. In each case, the
toolkit pinpointed the problem root cause which had
escaped traditional software debugging techniques.

INTRODUCTION
In a distributed control system, the system components
interact over a network, usually with the help of one of
the middleware frameworks, such as CORBA (Common
Object Request Broker Architecture). Having full details
of such interactions traveling over the network opens up
attractive opportunities for monitoring and debugging of
the system. The high-end network routers usually provide
a port mirroring feature which allows redirection of the
interesting network traffic to a dedicated router port. At
that port, a computer running a packet capture application
(for example, open source tcpdump, [1]) or a dedicated
appliance (e.g. OPNET ACE Live, [2]) receives the
packets and stores them into a file, typically in the pcap
format. After the capture, the offline analysis of the
packets can be performed using a deep packet inspection
tool, such as open source Wireshark [3]. The deep packet
inspection tools are capable of recovering the high level
protocol information from the raw capture files. In the
case of CORBA, the object method names, object

*This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. #LLNL-
ABS-631632

references and parameter values are recoverable. Given
that the packet captures are timestamped with millisecond
precision, an accurate application level trace of a network
event can be reconstructed after an event occurred. An
important advantage of the network-based monitoring is
that it works equally well across a variety of server and
embedded platforms, which is common for large control
systems. Achieving the same breadth of monitoring with
traditional debugging and logging tools would require
significant effort running multiple native tools and then
stitching log files together.

Figure 1: Deep packet inspection toolkit .

For a real-time control system, the introduction of any
logging, debugging or profiling tool comes with a risk of
drastically modifying the timings or behaviors of the
monitored events. Network packet monitoring is stealthy:
it is entirely passive; it does not modify the timing or
sequencing of events. Since the packet capture and
inspection tools run on dedicated computers, the
computing resources of the core control system are not
affected. The computing capacity allocated for packet
monitoring can be increased or decreased based on
situational needs.

In addition to the primary control system middleware
communications, the network captures can include other
protocols. For example, NFS (Network File System)
packets are translated to file operations (open, close, read,
write) by the deep packet inspection tools. Network-
attached hardware events can be derived from the
VISA/GPIB and MODBUS/TCP packets and others.

Setting up network packet monitoring for a control
system does require additional resources. A high-end
network router is usually required, as well as fast

THPPC086 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1278C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Knowledge-based Techniques

computers (or appliances) with high speed Network
Interface Cards (NIC). Large fast storage is also needed,
since even filtered network captures generate several
gigabytes of pcap files per host per day.

Finding relevant events and visualization of the
captured data often presents the biggest challenge. While
both the proprietary (e.g. OPNET ACE Analyst, [2]) and
open source (e.g. Wireshark) tools come with filters and
graphs designed for typical network administration tasks,
these tools can be very slow and require manual steps for
identifying system-specific events of interest.

To address the need for problem-specific event finding
and visualization tools, we have turned to the R language
for statistical computing and graphics [4]. The R language
is open source software, it is designed to handle large
datasets and it has excellent and highly customizable
visualization capabilities. As shown on Fig. 1, our toolkit
also relies on tshark tool from the Wireshark package [3],
a preprocessor script in Perl [5] and the ggplot2 package
[6] from the CRAN (Comprehensive R Archive Network,
[7]).

Using our toolkit, a number of off-normal behaviors
were analyzed, understood and fixes were verified.

TROUBLESHOOTING SPORADIC
SLOWDOWNS

Figure 2: Call duration and retransmit diagram.

Our toolkit was applied to investigate performance
degradations in a system with a distributed controller. The
controller performed correctly all the time, but with
intervals of extremely slow performance. During the
slowdowns, the network response times were tens and
hundreds times slower than usual. Also, increased TCP
retransmissions were seen during the slowdowns.

Understanding the patterns of the slowdowns
represented the largest challenge. While a normal
transaction time is around 1ms, the slowdowns
manifested in the scale of hours and days. Hundreds of
thousands of operations were involved, most of them

showing normal behaviors even during the slowdowns.
With the toolkit, the call durations were plotted,
partitioned by the call type and the TCP retransmit
overlay was added, as shown on Fig. 2. Once visualized,
the slowdowns patterns emerged. With the help of the API
Breadth and Volume Diagram, the root cause was
identified. A fix was developed, and once deployed, the
toolkit confirmed the resolution of the problem.

IDENTIFICATION OF EVENT PATTERNS

Figure 3: API breadth and volume diagram (fragment).

Once the general slowdown patterns emerged, the API
Breadth and Volume Diagram was employed to identify
the triggering sequences. This visualization is capable of
covering millions of distributed operations over days of
operations on one page. The volume of the high-
frequency events was accurately represented, yet single
and low-frequency events were not lost. Additional
attributes (e.g. TCP retransmits) were overlaid and color-
coded, as shown on Fig. 3.

Due to the comprehensive breadth of this diagram, even
the low-frequency and single API operations were plotted.
Usually, these would be lost in millions of high frequency
events. Unexpectedly, certain low frequency operations
appeared to be related to the beginnings of the
slowdowns. A focused code and data inspection of these
operations has uncovered CPU intensive program
fragments which were processing an abnormally
oversized dataset. Once the datasets were cleaned up and
task scheduling was adjusted, the slowdown problem got
resolved.

UNWINDING CONCURRENT
INTERACTIONS

The biggest challenge of analyzing a previously unseen
off-normal situation is to decide what metrics represent an
informative event. The power and expressiveness of the R
programming language and richness of its visualization
tools allow the investigator to quickly iterate through the
hypotheses. For example, when regularly occurring
events (such as periodic polling) are analyzed, the
previously considered Call Duration Diagram and API

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC086

Knowledge-based Techniques

ISBN 978-3-95450-139-7

1279 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Breadth and Volume Diagram may show very little
change over time. However, when the exact timing of the
event within the poll period is used as a metric, an
informative visualization can emerge, such as shown on
the Rigid Periodic Timeframe Diagram, Fig. 4. Here the
poll rate is 1.0 second, so the relative event time varies
between 0.0 and 1.0 seconds. The events which were
originated from the two programs are color-coded green
and blue. The strokes of these two poller tasks are highly
regular when the system operates normally, and they are
chaotic when the system is misbehaving.

Figure 4: Rigid periodic timeframe diagram.

The first guess about the poller tasks interaction

problem was further clarified by switching to a timeframe
which is attached to the “blue” poller, as shown on Fig. 5.

The analysis and discovery of this concurrency issue
was completed without significant knowledge of the
system design and without accessing the source code of
the affected program.

Figure 5: Floating timeframe diagram.

SUMMARY
By integrating commercial and open source tools, we

have developed a data analysis and visualization toolkit
for network packet captures. Our toolkit effectively
processes raw network captures of several gigabytes per
host. The R language is used to generate informative and
intuitive visualizations. The toolkit is used to understand
and address performance and timing issues in a large
distributed control system.

REFERENCES
[1] tcpdump and libpcap, http://www.tcpdump.org.
[2] Riverbed Performance Management, OPNET

http://www.riverbed.com
[3] Wireshark. Go Deep. http://www.wireshark.org
[4] The R Project for Statistical Computing,

http://www.r-project.org
[5] The Perl Programming Language,

http://www.perl.org
[6] ggplot2, http://ggplot2.org
[7] The Comprehensive R Archive Network,

http://cran.r-project.org

THPPC086 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1280C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Knowledge-based Techniques

