
USING A JAVA EMBEDDED DOMAIN-SPECIFIC LANGUAGE

FOR LHC TEST ANALYSIS

M. Audrain, K. Fuchsberger, J.C. Garnier, R. Gorbonosov, A.A. Gorzawski, A. Jalal, J. Suchowski,

P.C. Turcu, M. Zerlauth, CERN, Geneva, Switzerland

Abstract

The Large Hadron Collider (LHC) at CERN requires

thousands of systems to work in close cooperation. All

these systems have to be tested during Commissioning and

after interventions on them. Starting from the experience of

Hardware Commissioning, the execution of such tests were

already automated to a high degree. The remaining time in

commissioning campaigns is now spent in analyzing test

results, which is done manually to a certain extent. To im-

prove this situation, a new project was launched which aims

to automate the analysis of such tests as much as possible.

For this purpose, a dedicated Java embedded Domain Spe-

cific Language (eDSL) was created which allows system

experts to describe analysis steps in a simple way. The ex-

ecution of these checks finally can produce, along with the

simple decisions on the success of the tests, plots for the

experts to quickly track down the source of problems ex-

posed by the tests. This paper explains the concepts used

and the future vision of this first version of the eDSL.

INTRODUCTION

During a LHC hardware commissioning campaign,

about 10000 tests are run to determine if the machine is safe

for operation. The system which orchestrates the test runs

is the Accelerator Testing (AccTesting) framework [1]. A

test within AccTesting consists of the following three steps:

• The test execution performs a sequence of tasks on

a system under test, for example applying a specific

Current to a magnetic circuit.

• The test analysis validates the results of the test by

analyzing the data recorded during its execution.

• The test signing allows experts to stamp the two previ-

ous test steps with one or several signatures, ensuring

that the hardware device is behaving properly with re-

gard to the performed test.

With the experience gained over several years and cam-

paigns of hardware commissioning, it was found that the

most time spent in those campaigns concerns the second

test step: the analysis of the data read out from tests ex-

ecution. This analysis can be time consuming because it

is usually performed manually by experts or using semi-

automated LabView analysis programs. Moreover, those

LabView programs are often written and maintained by one

expert, with no version control over them. To automatize

the analysis execution and ensure analysis scripts maintain-

ability, the analysis framework project was launched. As an

essential part of this framework an eDSL was introduced

which is called Analysis language in the following.

The first section of this paper will present the motiva-

tion and requirements for an automated analysis frame-

work, which led to the creation of an eDSL. The second

section will present the eDSL’s basic concepts and their

application for our analysis language. The third section

will present the processing of the language, from the script

writing to its calculated result. Finally, the last section will

present the detection of syntax errors provided by the anal-

ysis framework.

MOTIVATION

The analysis framework’s primary need was to provide

a user-friendly Application Programming Interface (API)

for the system experts to formalize an analysis script to be

performed on the data read out from the execution of a spe-

cific test on a specific hardware device. Using this API, the

experts would write the different assertions (statement that

checks that a predicate is true) to be executed for the anal-

ysis to be considered as valid. The analysis scripts should

be version controlled so any change is tracked and the ver-

sions can be shared between experts.

Figure 1: The display of an analysis result consists of a

list of assertion lines, and a chart showing the detail of the

selected line. The graph highlights the area covered by the

assertion in orange and the failing part in red.

All in all, this API’s main goal is to take care of math-

ematical comparison and calculation so the hardware ex-

pert can focus on the formalization of the analysis. Ad-

ditionally, hardware experts are not necessarily software

developers, so the analysis framework API should be self-

THPPC079 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1254C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Knowledge-based Techniques



explanatory and readable enough to ensure the maintain-

ability of the scripts over time.

Although the language should be modular enough to al-

low calculations in future versions, its primary requirement

in the context of AccTesting is the verification of test re-

sults. Therefore, the following requirements were identi-

fied:

• The ability to define conditional checks called asser-

tions. These assertions have to ensure that a function

of time is comparable to a value at a single moment or

to another function of time or over a time interval.

• The use of a graphical user interface (GUI) component

to display the signals used in the assertions and the

results of those assertions.

Figure 2: Example of script written using the analysis lan-

guage.

From those requirements, multiple solutions were con-

sidered for the analysis language implementation. For ex-

ample, the definition of a model using XML and its con-

cepts of language transformation could have fit the bill. Fi-

nally, most of the researched solutions were pointing to the

use of a Domain Specific Language (DSL). Defining a DSL

can be tedious because it requires not only to define the lan-

guage, but also the compilation and interpretation of this

language. However, a DSL embedded in an existing lan-

guage (eDSL) is more reasonable to define as it uses all the

power the host language can offer, and therefore it is sim-

ply a new API for this base language. Because all of the

control system environment at CERN is written in Java, it

was an obvious step to use Java as a host language for the

eDSL. Further, the Java features (Generics, static imports)

and the tools around it (Eclipse IDE) make it easy to create

an eDSL without re-implementing basic functionalities.

BASIC CONCEPTS OF THE ANALYSIS

LANGUAGE

Analysis domain concepts As shown in the plot part

of Fig. 1, typical recorded data of a test consists of a ramp

up, a flat top and a fast decay. This data also contains one

or more events called Post Mortem triggers that can be seen

as analysis reference time markers.

The basic concepts and objects the language has to ma-

nipulate can be listed as the following:

• A Signal is a discrete (non-continuous) function with

the dimension of time as X values and any physical

dimension as Y values.

• A Point in time is a marker of a given moment in time.

An Event can be considered as a point in time within

a defined context. In the context of a test execution,

we can define the Post Mortem trigger as an event.

In some cases, an event can have several occurrences

during a specific context.

• A Time range can be considered as the period be-

tween two inclusive points in time.

• A Tolerance can be optionally defined for a condi-

tional check. This tolerance can be either absolute or

relative and consists of a range of values.

eDSL concepts The primary aim of the analysis lan-

guage is to be readable and writable by non-developer

users. On the other hand, our choice was to use an embed-

ded DSL, as outlined in the previous section. As a com-

promise for those orthogonal needs, we decided to use a

Fluent API [2]. In particular, for the Fluent API of our

analysis language, we chose the following concepts:

• Method chaining consists of having the current ob-

ject modifiers returning the host object carrying the

next element of the language syntax. Using a set of

Progressive interfaces, one can enforce the syntax

tree so the user can only use the mandatory elements

provided all along the chain.The use of this concept

is shown in Fig. 2. One drawback of method chaining

is that it is against good practices of command-query

APIs, defining that queries on an object should only

return a value and commands should modify the ob-

ject state without returning anything. Method chain-

ing is used to ease the readability and the usage of our

language.

• Expression builders are used to decouple the fluent

API building logic from the semantic model execu-

tion logic. The principle of the expression builder is

equivalent to the builder pattern. In our case, the set

of progressive interfaces used to constrain the method

chaining are implemented to use several expression

builders. The model is then built by chaining the calls

of the build() methods of the different expression

builders.

• The Semantic model represents the same subject as

the API, meaning that all parts of the language syn-

tax can be transformed into one or multiple model ob-

jects. This model can be seen as immutable domain

objects populated by the language using the expres-

sion builders. In our case, the semantic model is made

of immutable objects grouped in a tree structure and

the execution of our model consists in walking the tree

and resolving each element until the assertion result is

found.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC079

Knowledge-based Techniques

ISBN 978-3-95450-139-7

1255 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



• One more concept that can be useful for the analy-

sis language user experience is Object scoping. This

concept deals with providing a template for the writ-

ing of the user analysis script. With this template, the

user has access to the language starting points to write

analysis assertions. In the Java language, one can

use the Instance initializer technique to achieve the

template implementation. It consists of using double

brackets in the template which behave like the tem-

plate constructor. This technique reduces the com-

plexity of the embedded language scripts as seen in

the example shown in Fig. 2.

Applying the above concepts to our analysis language,
the overall syntax can be defined as the following:

{INSTRUCTION}.{CONDITION}.{TIME_DEFINITION};

The instruction part defines which type of functionality

is to be used from the language, either asserting or calcu-

lating, and also which signal is to be used as input data for

this instruction line.

The condition part of the assertion provides the type of

check (comparison to a number, to a function, etc...) that

will be performed on the previously defined signal. It al-

lows users to formalize the expected operand (single value,

function) and the tolerances to be used for the comparison.

The time definition part defines the time where the pre-

viously provided comparison will be applied. If the com-

parison is successful during this time (either a point in time

or a time range), then the assertion statement is considered

true.

The dots between the language parts provide a handy de-

limitation of those parts and represent the nodes of the syn-

tax tree where the user has to make a choice either to use

one or another branch of the syntax tree.

Finally, the use of the semicolon formalizes the end of an

assertion line where no more syntax branches are available.

LANGUAGE PROCESSING

From an analysis script to an analysis result, the follow-

ing three processing steps are executed:

• Java compilation: An analysis script is created by in-

heriting the abstract AnalysisModule class. The

script scope is then limited inside the analysis module.

When writing the different assertions formalizing the

analysis, the Java compiler will constantly check that

the syntax of the language conforms with the defined

language API.

• eDSL compilation: once the analysis script has been

written and compiles from the Java point of view,

the framework takes care of calling the build()

methods of the expression builders. This step, called

eDSL compilation in the following, produces the cor-

responding semantic model. This model is a tree

of immutable objects where the main node defines a

list of conditional checks to be executed. Each con-

ditional check can be decomposed into three main

branches, the actual operand defining the signal the

user provided, the expected operand being a contin-

uous function generated from the scalar value the

user provided and finally the time during which those

operands should be checked. An optional tolerance

function can be seen as a fourth branch and is gen-

erated from the tolerance the user wants to apply to

the assertion. An example of the compilation of the

analysis language to a semantic model can be seen on

Fig. 3

Figure 3: Creation of a semantic model from the compila-
tion of the language.

• Semantic model execution: when the semantic model

is built, some of its nodes are already resolved, like the

expected operand already transformed to a continuous

function when its tree node is constructed. Nodes like

the actual operand only contain information about the

name of the signal and need to be resolved later. These

nodes are resolved one by one by a dedicated execu-

tion framework, which analyses the expression tree of

the semantic model and resolves the tree nodes in the

correct order. This framework is currently embedded

in the AccTesting server itself and performs all the

required data extraction and calculations. There are

plans and work ongoing to improve and optimize this

framework. Further details can be found in [3].

SYNTAX ERRORS DETECTION

For the assertion language, there are three potential lev-

els of error detection as seen on Fig. 4: script writing time

errors (consist of Java compilation errors in the context

of our eDSL), eDSL compile time errors (errors occurring

when building the semantic model) and run time errors. In

the scope of this section, we will focus mainly on the two

THPPC079 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1256C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Knowledge-based Techniques



first error detection steps.

Figure 4: The different language processing steps in the

analysis framework.

One of the first design decisions made for our language

is that signals or scalar values are strongly coupled with

their units. This prevents the user from asserting that a sig-

nal of dimension A is comparable to a scalar value with a

unit of dimension B and enforces the user to formalize the

assertions in an understandable manner.

In order to achieve this design goal, we chose to use the

JScience library [4]. Amongst other features, this library

provides conversions of units and operations involving dif-

ferent units. Using the Quantity interface, one is able

to define any type of physical quantity, which then can be

expressed in different Units. An Amount is the combi-

nation of a scalar value and its unit. The implementation

of the language syntax uses the Java concept of Gener-

ics to constrain every node of the language syntax with a

Quantity defined using the JScience library. So when

the user starts an assertion with a signal of a certain quan-

tity, the comparison part will restrict the scalar value unit

to the same quantity. If the user tries to enforce a differ-

ent dimension to the scalar unit, an explicit Java compila-

tion error will be raised during the analysis script writing

in Eclipse IDE.

Another design decision was to restrict the language syn-

tax as much as possible. It should not be possible to per-

form multiple calls to a part of the syntax (instruction, con-

dition, time definition) in the same assertion line. Using

progressive interfaces introduced previously in the eDSL

concepts, we could first restrict the syntax to an under-

standable chain of methods so every assertion makes sense

when read. Only one problem remains: if the user does not

terminate an assertion line, the Java compilation step will

not raise an error, because even though the syntax is not

complete, there is no identifiable java error in the currently

defined assertion line. As explained in the previous part,

the eDSL compilation will check the completeness of each

assertions as well as the validity of the provided parameters

(arguments not null).

CONCLUSION AND OUTLOOK

The analysis framework has been up and running for

several months and scripts formalization is ongoing for

some of the automated tests. The analysis framework will

be ready to perform the operational analysis for at least

one prototype test during the next hardware commission-

ing campaign in 2014. Further analysis modules will need

some more features, which are in the pipeline for 2015. Fu-

ture plans for the analysis language, which also go beyond

simple test verification, concern the implementation of cal-

culation functionalities, which would make this language

very useful for more general analysis of operational data

of the CERN accelerators. Furthermore, the analysis lan-

guage could also be used directly in other operational soft-

ware, where calculations and verifications of stored signals

have to be performed. Examples for this are: Post Mortem

Modules, Sequencer Tasks or Pre/Post Operational checks

of systems.

ACKNOWLEDGMENTS

The authors want to thank the LHC hardware commis-

sioning team for all their feedback. Particular thanks goes

to B. Auchmann, S. Rowan, R. Schmidt and Z. Chari-

foulline for their input on the required features and the lan-

guage syntax.

REFERENCES

[1] D.Anderson et al., “The AccTesting Framework: An Exten-

sible Framework for Accelerator Commissioning and Sys-

tematic Testing”, proc. of ICALEPCS 2013, San Francisco,

CA, USA.

[2] M. Fowler and R. Parsons, “Domain-Specific Languages”,

Addison Wesley, 2011.

[3] K. Fuchsberger et al., “Concept and Prototype for a Dis-

tributed Analysis Framework for LHC Machine Data”, proc.

of ICALEPCS 2013, San Francisco, CA, USA.

[4] www.jscience.org

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC079

Knowledge-based Techniques

ISBN 978-3-95450-139-7

1257 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


