
D. Anderson, M. Audrain, K. Fuchsberger, J.C. Garnier, R. Gorbonosov, A.A. Gorzawski, A. Jalal,

A. Moscatelli, P.C. Turcu, K. Stamos, M. Zerlauth,

CERN, Geneva, Switzerland

Abstract

The Large Hadron Collider (LHC) at CERN requires

many systems to work closely together to allow reliable

operation and at the same time ensure the correct func-

tioning of the protection systems required when operating

with large energies stored in magnet systems and particle

beams. The systems for magnet powering and beam opera-

tion are qualified during dedicated commissioning periods

and retested after corrective or regular maintenance. Based

on the experience acquired with the initial commissioning

campaigns of the LHC magnet powering system, a frame-

work was developed to orchestrate the thousands of tests

for electrical circuits and other systems of the LHC. The

framework was carefully designed to be extendable. Cur-

rently, work is on-going to prepare and extend the frame-

work for the re-commissioning of the machine protection

systems at the end of 2014 after the LHC Long Shutdown.

This paper describes the concept, current functionality and

vision of this framework to cope with the required depend-

ability of test execution and analysis.

MOTIVATION

The number of tests executed at CERN to ensure the

proper functionality of the superconducting circuits in the

LHC is increasing year by year. Just last year about 7000

individual tests were performed with the help of the Ac-

cTesting framework (”AccTesting” in the following) which

is the central tool to manage this important process. Even

if the initial goal of this framework was to take care of the

LHC hardware commissioning, it was designed from the

beginning to be able to execute and track tests for any kind

of accelerator system. After a short Overview of the design

of the framework, this paper will focus on the work which

was done since the framework was introduced for the first

time [1] and the ongoing work, which has to cover the up-

coming challenges. The most important challenges are:

• Full Automation of the Test Analysis.

• Integration of tests for the commissioning of the LHC

machine protection systems.

All this is necessary to prepare the framework for a smooth

workflow during the restart of the LHC in 2014.

DESIGN OVERVIEW

Managing a large number of tests must take into account

the scheduling of parallel sessions between different users.

For this reason AccTesting has been structured to central-

ize the administration of the tests in the AccTesting server

which is the only one able to access the database where all

the test execution and the analysis results are stored. The

AccTesting server orchestrates the whole testing workflow

by providing the schedule of the different tests requested

from the users and avoiding execution conflicts between

them. An overview of the architecture is shown in Fig. 1.

Figure 1: The components of the AccTesting framework.

This centralization allows the users to have a global view

of the executed and scheduled tests at any time. An exam-

ple of a test plan overview is shown in Fig. 2. A screenshot

of an example test schedule which is produced by the cen-

tralized scheduler [2] is shown in Fig. 3.

Figure 2: The GUI to start tests and monitor their status.

The main building blocks of a test plan within AccTest-

ing are illustrated in Fig. 4. In short, they are:

THPPC078 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1250C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Knowledge-based Techniques



Figure 3: The schedule of the tests provided by the server.

• Tests: The core block is a test which represents cer-

tain actions taken by hardware or software. The same

test can be executed on different systems and system

types.

• Test phases: Each test belongs to exactly one test

phase. The test phases group the tests together and

depend on each other. This also defines the execution

order of blocks of tests: It is not possible to start any

test of a phase which depends on a phase where not all

tests are completed successfully.

• Test steps: Each test has three test steps: Execution,

Analysis and Signing. The Execution step represents

the moment where something is actually done on the

device in order to test it. If everything goes well in

execution and the system does not receive any kind of

blockers (crashes, errors, etc. . . ) the Analysis step can

start analyzing the results (the signals of the system

monitored during the execution step). Finally there

is the Signing step where, depending on the kind of

test executed, one or more experts have to validate the

outcome of the previous steps by signing with their

name and role.

Figure 4: The designed structure of the test phases, tests,

test steps.

Extension Points

The core design of the AccTesting framework is open for

extension without the necessity to change critical compo-

nents. The most relevant extension points (mostly repre-

sented by Java interfaces, that can be simply wired into the

system) are the following:

• TestStepHandler: They determine what exactly will

be the action to execute for a certain type of test dur-

ing a test step. All these handlers have a simple

canHandle(..) interface, which allows the server to

find an appropriate handler for a certain test. As soon

as a matching handler is found, the test is run on this

handler. In analogy to the previously described possi-

ble test steps (execution, analysis, signing), there are

three subtypes of test step handlers:

– TestExecutionHandler: Implementations of

this type specify the behavior when a certain

type of test is executed. For example, the han-

dler for testing LHC circuits uses another server

(the so-called sequencer) to do the real testing

work (driving currents, switching on/off equip-

ment etc.).

– TestAnalysisHandler: This type of handler

takes care of analyzing data logged from the exe-

cution of tests. In previous years, there was only

one handler, that was communicating with the

old LabView programs to analyze the test data.

– TestSigningHandler: This has only a single in-

stance and will stay like this for the near future,

which allows signing from clients of the server

(GUIs).

• Constraints: These classes have a slim interface

which basically allows the framework to query, if a

given pair of tests is allowed to be executed in a given

configuration. All enabled constraints are respected

by the scheduler in the server while generating the test

schedule. They can be enabled and disabled through

the AccTesting GUI and can even be dynamically

reloaded after some behavioral change, without the

need to restart the server.

• LockProvider: A system can have different active

locks. For example, LHC circuits can be locked at

the hardware level, or only for test-execution with a

simple flag in the database. This extension point is

foreseen to plug further types for other systems into

the framework.

• SystemProvider: These plug-ins allow us to feed dif-

ferent types of systems into the framework. Systems

are only identified by a unique key, which is kept in

the AccTesting database for reference. All other in-

formation about the systems is read at runtime from

the system providers. In the meantime, this mecha-

nism was extracted to a separate project [3] as will be

described later.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC078

Knowledge-based Techniques

ISBN 978-3-95450-139-7

1251 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



• SystemInformationProvider: Allows us to transport

other information of a system (e.g. Issues, Status) to

the framework, mainly to display it in the GUI.

• TestProvider: These extension points provide tests

to the system. It also has to provide the information on

which systems a certain test could be executed. Again,

the framework only keeps entries of the unique keys in

a table, but loads all the remaining information from

the test providers.

• TestResultsViewer: This is the only extension point

for the AccTesting GUI so far. The framework queries

its interface at the time the result of an executed test

shall be displayed and collects all the viewers which

are returned by all the providers and displays them in

different tabs in the respective dialog. An example

for this is the post mortem viewer, which is plugged

into AccTesting to show raw data produced during the

tests.

AUTOMATED ANALYSIS

After putting AccTesting in place in 2011, the duration

of the Execution steps was brought to a reasonable mini-

mum by eliminating human errors on triggering wrong se-

quences or triggering correct tests while not all conditions

were fulfilled. The next action was targeted at the Analysis

steps, to reduce (where possible) the time spent on analy-

sis. As mentioned in the previous section, only one analysis

handler was in place before. This handler was communi-

cating with dedicated LabView applications to perform the

analysis of signals produced by LHC circuit tests.

To find a more consistent approach, a new project was

launched with the aim to provide a better way to analyze the

data. Concerning the extension of the AccTesting frame-

work, it is simply a new instance of an analysis handler.

The concepts behind are the following:

• A dedicated analysis module can be scripted for each

test type within the AccTesting framework, which

describes which checks (assertions) have to be per-

formed on the data. To simplify this task and make

it possible for system experts (non-programmers) to

write such modules, a dedicated assertion language

was created, a so-called Java embedded Domain Spe-

cific Language (eDSL) [4].

• Using the checks formulated in these modules, the

new analysis framework [5] can perform the neces-

sary calculations and checks.

• Additionally, these analysis modules can also be seen

as a machine-readable version of a test specification.

Up to now, these specifications (test procedures) were

always formulated in text documents. Nevertheless, it

would be preferable in the future to formulate the tests

in this executable format and generate documentation

out of it. This ensures the perfect coherence between

documentation and test execution (which can not be

guaranteed up to now).

• On the GUI side an additional test results viewer was

added, which displays the results of the assertions and

the related signals.

One particular test was selected as a prototype for the

new analysis concept, because in total it required the

longest time to perform and had no automatic analysis

module in LabView yet. Therefore the biggest margin of

improvement could be gained by speeding up this particu-

lar test. In the longer term, the new mechanism shall re-

place the current LabView modules one after the other and

will be capable of performing more sophisticated and gen-

eral purpose analysis tasks.

MACHINE PROTECTION SYSTEMS

COMMISSIONING

The biggest extension for the AccTesting framework

which is currently ongoing, is to prepare it for use during

the commissioning of the Machine Protection System (aka

MPS) during the LHC startup in 2014 [6]. To meet the re-

spective requirements, along with simple extensions, some

fundamental changes and additions will have to be imple-

mented.

Barriers

Currently the execution order of the tests within Ac-

cTesting is based only on dependencies between tests. Nev-

ertheless a more general approach will be necessary during

the MPS commissioning where the workflow will involve

tests on different systems. For example, it is possible that

a test on one system has to be done some time before an-

other one on a different system. The concept of barriers

will be introduced to solve this necessity: They will be put

between test phases and they will ensure that all the tests

affected by a certain barrier will take place before it and

never beyond it. This will allow the execution and com-

pletion of the test plans to be performed in a more flexible

way without losing any defined constraint. An example

with two barriers is shown in Fig. 5.

Composite Tests

Currently one test in AccTesting is assigned exactly to

one system but this approach might not always be that sim-

ple: One system might consist of several subsystems and

a test might be formulated in a way, such that a certain set

of tests on each subsystem has to be completed in order

to contribute to the outcome of the test of the composite

system. An example of this situation could be a test for a

Beam Loss Monitor (BLM) crate which consists of one test

for each BLM connected to that crate. To model this behav-

ior an additional feature set will have to be implemented in

AccTesting allowing the definition and the tracking of so-

called composite tests, as illustrated in Fig. 6.

THPPC078 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1252C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Knowledge-based Techniques



Figure 5: The Concept of test barriers: All the tests (brown

rectangles) left of a barrier have to be successfully per-

formed, before any of the tests right of the barrier are al-

lowed to be started.

Figure 6: An example of a Composite Test: A test for a

BLM crate could consist of a test for each BLM connected

to the crate.

Systems and System Relations

While the initial version of AccTesting only supported

electrical circuits, all the new features require the use of

different kind of systems. Further, many of them require

the knowledge of relations between systems. To manage

this information in a consistent way, another sub-project

was spawned [3]. This Systems Management project pro-

vides a slim framework, which collects the information

about different systems (e.g. Circuits, Magnets) and rela-

tions between them and provides them, via a central Java

API, to applications. While this framework is currently

embedded in AccTesting, the final goal is to run it as a

standalone server. Currently, it manages the information of

about 17000 systems with 28000 relations between them.

Test Plan Editor

Up to now, it was only possible to edit the test plan

by directly editing the database. Since this is problem-

atic because of several reasons (Security, Consistency, Re-

quired Expert Knowledge), GUI support for performing

this kind of task is in preparation. This will be especially

needed as soon as AccTesting is used in a broader field,

like MPS commissioning, where the test plan might have

to be adapted more frequently (at least during the first cam-

paign). The plan is to provide at least basic functionality

in the beginning of 2014 and it is already possible to create

and delete test plans. Extended functionality (Editing of

Phases, Barriers and Composite Tests - see following sec-

tions) might have to be postponed until later in 2014.

CONCLUSIONS

Complex accelerator machines, such as the LHC at

CERN, need robust and safe applications to lead their qual-

ity and safety tests. Working with thousands of systems,

where each of them has tens of test to perform, was an

additional challenge. The AccTesting framework has han-

dled this task since 2011, providing a clear and complete

overview of the situation helping the users during this very

delicate process.

In this paper, we described the most recent extensions:

The development of an analysis framework for test results

and the AccTesting related preparations for MPS Commis-

sioning. We outlined, how these extensions fit into the

framework and summarized the changes in the core.

The framework served as a reliable tool for two hard-

ware commissioning campaigns already and will, due to

the ongoing work, be able to cover more and more needs

of the overall commissioning process of CERN accelerator

systems and beyond.

REFERENCES

[1] K. Fuchsberger, “Acctesting Framework - Motivation,

Overview and First Experience”, CERN, Geneva, Switzer-

land 2012.

[2] M. Galetzka, M. Zerlauth, “Development and evaluation

of a scheduling algorithm for parallel hardware tests at

CERN”, Bachelor Thesis, University of Karlsruhe, 2012.

 ICALEPCS'13

[6] K. Fuchsberger, “Software tools for MPS”, MPP Workshop

March 2013, Annecy, France.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC078

Knowledge-based Techniques

ISBN 978-3-95450-139-7

1253 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


