
OVERVIEW OF "THE SCANS" IN THE CENTRAL CONTROL SYSTEM OF

TRIUMF'S 500 MeV CYCLOTRON

J. J. Pon, K. S. Lee, M. M. Mouat, P. J. Yogendran, TRIUMF, Vancouver, Canada

B. Davison, Simon Fraser University, Burnaby, Canada

Abstract
The Controls Group for TRIUMF's 500 MeV cyclotron

developed, runs and maintains a software application

known as The Scans whose purpose is to: a) log events, b)

enunciate alarms and warnings, c) perform simple actions

on the hardware, and d) provide software interlocks for

machine protection. Since its inception more than 35 years

ago, The Scans has increasingly become an essential part

for the proper operation of the Cyclotron. This paper gives

an overview of The Scans, its advantages and limitations,

and desired improvements.

INTRODUCTION

The Scans is a primary software utility [1] in the Central

Control System (CCS) of TRIUMF’s 500 MeV cyclotron.

More than 35 years ago the first version of The Scans was

created. Since then this utility has undergone, and continues

to undergo, significant evolution. In the present

configuration of the CCS, The Scans is an essential

component.

This utility has a master process, which on startup

spawns one subprocess for each scan that is in a list of

active scans. Each subprocess (a child scan) then reads its

corresponding scan definition file (a script file) and runs

autonomously for the most part. Each definition file has a

similar structure, which will be described later but in brief

has a user defined number of elements, where each element

has three parts: a) a header, b) a test condition, c) actions.

From one perspective The Scans is structured like a

programmable logic controller (PLC). Each scan follows a

PLC-like sequence of: a) acquire data, b) test the data, c)

take actions, and d) repeat the sequence. One of the prime

differences is that The Scans executes as a regular software

process in a common server while a real PLC needs

dedicated, specialized hardware.

Operators interact with The Scans via an X Window

graphical user interface known as Xscan (see Fig. 1) and

multiple instances of Xscan can be running.

The scan definition files can be categorized into two

basic types, regular and interlock. Both types have the same

structure but by convention only interlock scans take

interlock actions (e.g., trip the beam). Detailed information

on the state of interlock scans is displayed in a different X

Window application called XTpage (see Fig. 2).

Individual scan elements can perform a wide variety of

actions such as provide machine protection (beam trips and

“soft” trips [2][3]) and warnings, diagnostics, initializations,

watchdog monitoring, event notification (messages to

activity logs), automatic resetting of equipment, and

dynamic adjustment of gain settings to avoid saturation.

Typically there are more than 50 active scans and more

than 4500 enabled (active) scan elements. The message logs

regularly receive several thousand event messages a day

from scan elements (see Fig. 3). The Scans runs 24 hours a

day, 7 days a week, even during maintenance and shutdown

periods when possible.

Figure 1: Xscan – User interface to The Scans.

Figure 2: XTpage display of an interlock scan.

THPPC001 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1090C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

FRAMEWORK AND SOFTWARE

ENVIRONMENT (DEVELOPMENT &

PRODUCTION)

The Scans is written in C/C++ and runs on an OpenVMS

machine which has access to all of the CCS devices that

need to be monitored or controlled.

A third-party messaging application called Oracle

MessageQ is used for communication between the master

process and its active child scans for requests such as

enabling/disabling scan elements. A typical operator request

follows this sequence: a) the operator uses Xscan to make a

request, b) the request goes via the MessageQ to the master

process, c) the master process identifies the relevant child

scan and relays the message to it using the MessageQ, and

d) the child scan receives the message and acts accordingly.

With Xscan, operators can request actions such as a)

activate/deactivate entire scans, b) enable/disable individual

scan elements, c) display a list of active and inactive scans,

and d) display currently disabled scan elements. If for some

reason The Scans is restarted, the state of active and

inactive scans is preserved but the list of disabled scan

elements is cleared.

The MessageQ is also used extensively by individual

child scans to send warning and event messages to activity

logs. This messaging system is flexible enough to allow

passing messages not only between processes in the same

computer but also across different machines and even

clusters. Every message is logged in two separate and

independent computer clusters for redundancy.

The functional part of Xscan (the X Window application)

is written in C/C++ and the graphical part is written in UIL.

Xscan can be displayed on any platform that has an X

Window server application. On a Linux machine the X

server is native and Xscan can be readily displayed. On a

Windows machine you would need X Server software like

X-Win32 or Xming. On the Apple iPad/iPod touch/iPhone

there is an X server app called iSSH available.

Fig. 4 shows a diagram of how The Scans is functionally

organized.

SCAN DEFINITION FILES

For each child scan there is a corresponding scan

definition file. By convention each definition file contains

scan elements that are primarily related by function. Thus,

there are scan files for beamlines, safety, magnets, over

current interlocks, RF devices, and watchdogs to name a

few.

The scan definition files are written in ASCII text. This

was a conscious decision to allow operators to quickly

view, understand, and even make changes in urgent cases.

The definition files are initially read and parsed by the scan

software and subsequently run as executable code, not

interpreted. If the scripts are modified, the corresponding

scan needs to be reactivated to pick up the changes.

Reactivation of individual scans is fast with minimal or no

beam disruption.

Each scan file has a similar format and starts with a scan

header. In the scan header we define the scan frequency.

Other information in the scan header relates to the number

of scan elements, a history of revisions, and helpful

comments about the particular scan.

Next follow the scan elements. Each element adheres to

the following format: a) an element header, b) a test

condition, and c) actions to perform. This is the syntax for a

single element:

ELEMENT i:<DIS|EN>ABLED,ACTIONS: n[,args,...]

<test condition>

<action 1>

 :

<action n>

ELEMENT i defines the element number.

<DIS|EN>ABLED specifies whether the element is

enabled or disabled on startup (i.e., scan activation).

ACTIONS: n is the number of actions to perform when

the test condition is true.

Figure 3: Sample messages logged by The Scans.

Figure 4: Primary application components of The Scans.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC001

Control System Infrastructure

ISBN 978-3-95450-139-7

1091 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

[,args,...] are optional arguments. Common options are:

TRUE_COUNT specifies how many consecutive scan

cycles the test condition must be true before taking action

(used for timing and de-glitching). If the keyword is omitted

the element infers a TRUE_COUNT of 1.

NO_AUTODISABLE prevents the element from

disabling itself when there is a device error. By default, if

an element tests a device that returns a data acquisition error

(i.e., hardware error) the element performs its actions and

then automatically disables itself to prevent it from

continuously enunciating it is in an error state.

NO_AUTODISABLE is useful in cases where interlock

elements need to stay enabled and keep providing

protection even during hardware errors. The element can

still be manually disabled by operators if they decide it is

safe to run without a particular interlock protection.

<test condition> must return true for the element to

perform actions. The syntax for the test conditions can

include the relational operators =, !=, >, >=, <, <=; and

conditional operators like AND, OR. There is also a special

operator != PREVIOUS which compares the current value

to the one acquired in the previous scan cycle. In cases

where an element is needed to perform its actions on every

scan cycle we have the keyword ALWAYS. Alternatively,

the keyword FIRST TIME can be used in instances where

we need the element to perform only on the first scan cycle

such as when initializing temporary variables.

If <test condition> evaluates to true (and TRUE_COUNT

is satisfied) then the element performs its assigned actions

sequentially. Each action starts with the keyword DO

followed by a command. The most frequently used

commands are:

• INSERT FARADAY CUP (to trip the beam).

• LOG (to enunciate a message to the logs).

• CALC (to perform a mathematical calculation).

• WRITE (to write a value to a device).

Here is a typical example of a scan element:
ELEMENT 8: ENABLED,ACTIONS: 4, NO_AUTODISABLE

TV,56,MUX < 1.1E-9 OR TV,56,MUX > TK,531,MUX

DO INSERT FARADAY CUP

DO LOG opslog “CORRECTION PLATE TRIP: VACUUM”

DO CALC TEMP(90) = 15 * 65535 + 101

DO WRITE TEMP(90) TO ET,100,DAC

FEATURES

• Frequency: Each child scan runs at its own predefined

time period to ensure the conditions are tested at the

required rate, but not so often that CPU cycles are wasted.

At present we have some scans running at 10 Hz while

others run as slow as once per minute. Regular scans

typically run every 6 seconds while interlock scans most

commonly run at 5 Hz. In principle, scans could run at up

to 100 Hz.

• Defeats: Elements can be defined as enabled or disabled

on scan activation. Operators can manually activate or

deactivate an entire scan. Also, they can enable or disable

an element or a bit within an element without needing to

reactivate the whole scan.

• Inter-process communications: The Scans conveys

useful information like: a) a list of elements currently

disabled, b) a list of active and inactive scans, c) trip

status, d) last trip, e) interlock defeats. This feature allows

other applications to display the data. The Scans also

listens for external commands and takes actions.

• Multiple actions: A scan element can perform multiple

actions. For example, an interlock element a) inserts the

faraday cup, b) logs the event, c) performs some

mathematical calculation, d) exports its trip status, and e)

exports the last trip information.

• Efficient: Each scan behaves similar to a PLC. On each

scan cycle the data needed by all its elements is acquired,

each element tests the data (no data re-acquisition), and

takes action(s).

• Scripts are easy to read: The scripts are in ASCII. Thus

they are relatively easy to understand and modify.

• Scalable: Elements can be added to any scan and new

scans can be introduced with minimal disruption. The

Xscan can be displayed in any platform capable of

displaying X Window applications.

• Temporary variables: Variables can be used in The

Scans to give it more flexibility.

PERFORMANCE

The master process and child scans run in one server with

access to all CCS devices. In a typical operational day, over

50 scans are active which translates into more than 4500

scan elements altogether. About 15 scans run at 5 Hz.

Typical CPU load on the server is about 2 percent.

The only noticeable load on the system occurs when the

child scans go into a state referred to as a “message storm”.

This occurs when, for example, there is a power bump that

knocks out a significant number of hardware devices, which

in turn forces the child scans to send a large volume of error

messages to the logs. Smart message filters have been

added to the message handling to minimize the impact to

the system load.

OPERATIONAL EXPERIENCE

The Scans has become essential for running beam and it

is one of the primary mechanisms providing machine

protection through software. Changes to scan elements

occur almost every week which is indicative to how useful

and reliable it is to Operations.

The messages generated by The Scans are useful in

forensic analysis. These messages often give a good view of

the activities and timing of events that occurred and are

used daily in this fashion. The message log can be scanned

back more than 10 years, which provides long term

information about event frequency. A special graphical user

application called the X Window Message Browser (XMB)

has been developed to aid in searching the message log.

THPPC001 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1092C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

PLANS FOR ENHANCEMENTS

One outstanding request is to allow users (primarily

Operations) to define their own scans from the XTpage

application. This request would provide a quick, simple,

short term, functionality. The need is to have the ability to

put an alarm/watchdog on a signal (or set of conditions) and

to have an audible alarm and an entry in the message log.

There has also been a request for additional Xscan

display features like a sortable, tree-like display of

individual scans and scan elements.

Another notable request is to have the ability to save and

restore the enable/disable state of individual scan elements.

This feature would be useful in cases when the disable state

of all scan elements need to be restored after a server reboot

or to disable the elements in a specific scan when the scan is

reactivated.

SUMMARY

In summary, The Scans has proven to be a useful, easy-

to-modify, scalable, robust application. This software has

evolved over more than three decades to be an essential part

of the Cyclotron’s Central Control System. The Scans runs

reliably and efficiently with very minimal load on the

system. There is sufficient functionality to be useful in a

variety of areas such as machine protection (warnings, hard

trips, and soft trips), event logging, diagnostics, and device

initialization.

These functions have gradually been expanded from

providing basic machine interlock protection and message

logging to finer actions like setting the proper gain on

devices and iteratively/adaptively reducing beam intensity

(soft trips).

REFERENCES

[1] M.M. Mouat et al., “Update on the Central Control

System of TRIUMF’s 500 MeV Cyclotron”,

ICALEPCS2011, Grenoble, France, Oct 2011, p.469

(2011).

[2] J.J. Pon et al., “Recent Changes in the 500 MeV

Cyclotron’s Central Controls System to Reduce Beam

Downtime and Beam On/Off Transitions”,

ICALEPCS2009, Kobe, Japan, Oct 2009, TUP043, p.

179 (2009); http://www.JACoW.org/

[3] M. Trinczek, M. M. Mouat, J. J. Pon, “Increasing Beam

Delivery through Soft Trips”, Accelerator Reliability

Workshop (ARW2009), Vancouver, Canada, 25-30 Jan

2009.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC001

Control System Infrastructure

ISBN 978-3-95450-139-7

1093 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

