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Abstract 
To optimize laser performance and minimize operating 

costs for high-energy laser shots it is necessary to locally 
shadow, or block, flaws from laser light exposure in the 
beamline optics. Blockers are important for temporarily 
shadowing a flaw on an optic until the optic can be 
removed and repaired.  To meet this need, a combination 
of image analysis and machine learning techniques have 
been developed to accurately define the list of locations 
where blockers should be applied.  The image analysis 
methods extract and measure evidence of candidate sites 
and their correlated downstream hot spots and this 
information is passed to machine learning algorithms 
which calculate the probability that candidates are flaws 
that require blocking. Results show that the machine 
learning helps to significantly reduce false alarms, while 
correctly classifying true sites, compared to the image 
analysis methods alone.  Ten-fold cross validation of the 
refined training set shows about 99% of the detected 
candidate sites are rejected, leaving only 1% to be brought 
forward for review (300 sites brought forward vs. 30,000 
detected candidates); about a fifth of those brought 
forward now are false alarms compared to many times the 
true positives using image analysis alone.  In practice, this 
amounts to between 0 and 3 false alarms per image with 
over 98% true positive detection. 

INTRODUCTION 
Maintaining the quality of the optics on a high-energy 

laser, such as the National Ignition Facility (NIF), requires 
continuous monitoring of their condition.  Automated 
analyses [1,2,3] have been developed at NIF to track and 
report  damage  on  optics  throughout  the facility.  These  

 

Figure 1:  Blockers are used to temporarily shadow 
identified sites from high energy laser exposure. 

sites can be blocked from further interaction with the high 
energy laser light until they can be removed and repaired 
for re-use.  One inspection camera system resides at target 
chamber center.  It can inspect the nearest (final) optics, 
which have individual edge-injected illumination, by 
focusing on each optic directly, in sequence. Images of 
optics further upstream and illuminated with bright field 
backlighting are more complex.  For these images, 
damage sites can be confirmed, or found indirectly, by 
looking for a diffraction pattern “signature” on image 
planes closer to the camera.   

The signature of interest is created when the 
illumination-laser plane wave interacts with a defect, 
modeled as a circular opaque scattering site. 

Figure 2: A plane wave from the illumination laser 
interacts with a scattering site to create diffraction rings 
downstream.   

The interaction is described mathematically as: 
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where J[1,x] is a Bessel function of the first kind, and   is 
the wavelength of the illuminating light.  In general the 
larger the source defect radius R, the higher the intensity 
amplitude of the resulting rings.  The greater the distance 
z, the larger the rings.  

Working backwards, then, the characteristics of such a 
ring pattern can be used to predict the size and location of 
the site that generated it (prior examples from NIF and 
elsewhere are [4,5,6]) and this in turn can be used to 
report and track sites on optics that may need to be 
blocked, or shadowed, from high energy laser light until 
they can be repaired. 

 ___________________________________________  

*This work performed under the auspices of the U.S. Department of 
Energy by Lawrence Livermore National Laboratory under Contract 
DE-AC52-07NA27344, # LLNL-CONF-644265. 
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METHODS 
Detecting the diffraction ring patterns in bright field 

images required a custom image analysis algorithm based  
on the physics principles specific to the creation of 
diffraction rings.  Because of the complexity of the 
images, this algorithm also finds a large number of false 
positives.  Machine learning techniques are used to 
distinguish the true from false positives and significantly 
enrich the number of true actionable sites (candidates for 
blocking) brought forward for review. 

Detection Algorithm 
The primary mechanism for the production of 

diffraction ring patterns is depicted in Figure 2 and shown 
in the associated equation.  The equation generates the 
“signature” shown in Figure 3 when using relevant 
parameters (e.g. 300 micron scattering site imaged 9.6 
meters away).  This can then be used as a template to find 
diffraction rings of interest. 
 

 
Figure 3:  The resulting diffraction ring “signature” using 
parameters for a 300 micron scattering site imaged 9.6 
meters away.
 

Two initial detection methods are applied and their 
results combined.  One method locates bright centers (the 
peaks that remain after dividing by local average) and 
calculates a peak-to-mean ratio in those neighborhoods. 
Sites with a peak-to-mean ratio of at least 1.2 
(operationally determined for sites of interest) are kept.  
The second method uses the template from Figure 3 and 
computes a cross-correlation with the image.   
 

Figure 4:  Cross correlating the original image (left) with 
the expected diffraction pattern from Eq. 1 emphasizes the 
locations of candidate diffraction patterns. 
 

Locations with intensity at least 3 sigma above the 
mean were recorded and combined with the sites found 
with the first method. 

The combined locations were further evaluated by 
measuring a number of characteristics in their local 
neighborhood.  In addition, the co-occurrence matrix of 
the candidate regions provided measures of contrast, 
correlation and energy.   

Initially, we tried tuning the image analysis parameters 
to select the most likely rings of interest.  As is often the 
case with handpicked cutoffs, this resulted in either too 
many false alarms or not enough true positives depending 
on the values selected.  To avoid missing true positives, 
we set these parameters to include many thousands of 
false alarms in addition to the true positives, and applied  
machine learning techniques to correctly classify the 
candidate sites. 

 
Machine Learning 

In order to reduce the overwhelming number of false 
alarms without reducing the true positives, we turned to 
machine learning techniques, which have been applied 
successfully at NIF in the past [7, 8].   Specifically, we 
used the Avatar Machine Learning Suite of Tools [9] by 
first training the classifier and then applying it to compute 
the probability of relevance for new candidates.    

 

Training Data 
Training the classifier adequately requires discovering 

and collecting salient measurements. During the image 
analysis, we measure a few dozen features in the area of 
each candidate site.  Some measurements are generically 
useful while others are more specific to the expected 
properties of these rings.  Examples include area, aspect 
ratio, size of the bounding box, solidity, Euler number, 
peak-to-mean, disk radius, radii ratio, fringe contrast and 
similarity to the ideal template.  Once measurements are 
calculated and stored, we assigned a “truth” value to each.  
Since labeling every single one of the more than 30,000 
candidate sites is a daunting task, we let the machine 
learning tool do some of the work for us.  Several hundred 
sites were known and had previously been tracked 
manually.  We found those among the candidates and 
labeled them as hotspots (of-interest).  The rest were 
automatically labeled not-of-interest and we used this to 
initially train the classifier.   

We used Avatar to generate an ensemble of decision 
trees (using options for bagging, Hellinger split method, 
non-weighted voting and its own self-stopping criterion 
which resulted in about 90 trees.)  The first iteration of 
training brought to light a number of errors in the original 
training set, as intended.  By manually reviewing and re-
labeling sites that the classifier brought forward as high 
probability of being of-interest, we were able to add some 
previously untracked sites of interest to the training set.  
After a few iterations, Avatar accurately reported 
enormous numbers of false alarms and greatly enriched 
the percentage of true positives brought forward. 

RESULTS 
Evaluating the classifier results with ten-fold cross 

validation of the refined training set showed about 99% of 
the detected candidate sites were rejected, leaving only 
1% to be brought forward for review (300 sites brought 
forward vs. 30,000 detected candidates); about a fifth of 
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those brought forward are false alarms.   In practice, this 
amounts to between 0 and 3 false alarms per image (down 
from hundreds or even thousands in some scenarios). 
Evaluation suggests the remaining false alarms are 
primarily out-of-range (i.e. not of interest) diffraction 
rings and additional training may help prune these out as 
well.   

The image analysis and machine learning combination 
yields an enriched collection of candidates to review for 
blocking, as shown in Figures 4 and 5.   In addition to 
graphical presentations, we provide an automated list of 
candidates with associated probabilities as computed by 
the ensemble of decision trees.  Candidates for blocking 
can then be reviewed in rank order. 
 

 
 

Figure 4: This region illustrates patterns that both do and 
do not meet the signature of the sites of interest.  The blue 
squares indicate rings that were correctly found.  Other 
prominent diffractions ring patterns are visible but are 
born from out-of-range sources, not of interest, and thus 
are not marked with squares (true negatives). 

 
 
 
Figure 5:  Full image of a backlit optic with one 
highlighted diffraction ring pattern showing evidence of 
damage on an upstream optic. 
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