
OVERVIEW OF THE ELSA ACCELERATOR CONTROL SYSTEM

D. Proft∗, F. Frommberger and W. Hillert, ELSA, Bonn, Germany

Abstract

The Electron Stretcher Facility ELSA provides a beam

of polarized or unpolarized electrons with a maximum en-

ergy of 3.2 GeV for hadron physics experiments. The in-

house developed control system has continuously been im-

proved during the last 15 years of operation. Its top layer

consists of a distributed shared memory database and sev-

eral core applications which are running on a linux host.

The interconnectivity to hardware devices is built up

with a second layer of the control system operating on PCs

and VMEs. High level applications are integrated into the

control system using C and C++ libraries. An event based

messaging system notifies attached applications about pa-

rameter updates in near real-time.

The overall system structure and specific implementa-

tion details of the control system will be presented.

HISTORY

Until 1994 the ELSA stretcher ring was operated in

stretcher mode or storage mode only [1]. In the stretcher

mode an electron beam prepared in the 50 Hz booster-

synchrotron could be injected into the stretcher ring and

extracted to hadron physics experiments at variable energy

between 0.5 GeV and 1.6 GeV. In the storage mode the

electron beam can be stored in the stretcher for a lone time

(up to several hours). In the early 1990s higher energies (up

to 3.2 GeV) were asked for by the experiments, making a

post-acceleration mode inevitable.

Going along with the energy increase, a fast ramp of

the main magnets’ power supplies in the stretcher ring is

needed. Therefore, a considerable amount of magnetic

field calculations beside long vectors containing power

supply current ramps have to be processed. Additionally,

a fast ramp up to 3.2 GeV within 300 ms puts high re-

quirements on the beam diagnostics devices and the data

analysis.

Neither the hardware running the existing control sys-

tem, nor the control system itself had enough capabilities

to fulfill these new requirements [2]. Hence, a new control

system running on three HP workstations with support for

the existing hardware (approx. 50 in-house developed, so-

called MACS IO boards interfacing the hardware devices)

was developed in-house [3]. In 1995, the old control sys-

tem was successfully replaced by the new one.

Besides continuous improvements of the software and

hardware components over the last years the system was

ported from HP-UX to linux in the end of 2012, so it can

now be run under any linux operating system.

∗proft@physik.uni-bonn.de

kernel-

programs

database

application

programs

ethernet, UDP/TCP

database

application
programs

drivers

database

application
programs

drivers

power-
supply

database

application
programs

drivers

measure-
ment

power-
supply

menu system

X-forwarding

process layer
- VMEs

- Linux PCs

control layer
- Linux PC

fieldbus layer
- PLC systems

- MACS systems

device layer

menu layer
- X window
client

Figure 1: Hard- and software layers of the control system.

DESIGN PRINCIPLES

Some basic design decisions have been made before the

development took place [4]. The main features include a

completely event based data handling model and a sepa-

ration of core functionality (database and event handling

by the kernel) from userspace applications. It combines

steering tasks and real time beam diagnostics in one homo-

geneous environment. A transparent design allows access

to the X windows-based graphical user interface from any

computer.

Menu System

The whole control system consists of 5 hard- and soft-

ware layers (see Fig. 2). On top of them the graphical user

interface gives access to all the accelerators parameters. It

combines all steering tasks and the beam diagnostics in one

platform. The user can choose from approximately 600 hi-

erarchically ordered menus, reaching the desired menu in

less than eight clicks.

Every menu can easily be created or modified by using

an intuitive WYSIWYG menu editor. All menu elements

can be positioned and linked to parameters from within the

editor. The menu gets saved to a human readable and ed-

itable text file, which enables an automatic and scripted cre-

ation of new menus.

The whole menu system is written using native Xlib li-

brary calls for graphical output. It was ported to JAVA al-

lowing the execution of the menu system on Android oper-

ating systems. This gives easy access to device settings via

THCOBB04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1396C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades



application:
changed
value

database
write

rule
input

parameters
output

parameters

rule 1

rule 2

expert engine X

...
re
a
d

sn
a
p
sh

o
t w

rite
sn

a
p
sh

o
t

triggers

Figure 2: Expert engines.

the control system menu during maintenance periods even

if no PC is in proximity of the appropriate device.

Control Layer

The next layer — the control layer — consists of the

kernel managing a shared memory database containing all

parameter definitions and values. The database is sepa-

rated into several parts, i.e. the resource base containing

structural informations about parameters like limits, max.

number of vector elements and the quantity’s physical unit.

The structural information is complemented by the online

database filled with actual parameter values, which are

updated continuously at runtime. Every parameter value

administered by other control hosts is stored in a cache

database to give applications easy access to this parame-

ter as well.

All databases are stored in a shared memory. Any ap-

plication wishing to access the database attaches to the

shared memory and has direct and fast access to it with-

out any wrapper. The mutual exclusive access to the on-

line database is enforced by semaphore locking. In total,

the currently defined 13 000 parameters including all meta-

data, only consume about 70 MB of RAM.

The core applications taking care of the database are

extended by so-called expert engines. They represent the

physical intelligence of the control system, bringing in

any physical calculations needed to operate the accelera-

tor. Each expert engine can handle a set of rules which are

basically finite state machines. Each rule engine is supplied

with a consistent database snapshot of all parameters cap-

tured at the same time, and itself writes all computed values

back to the online database (see Fig. 3).

Simulations of beam dynamics can directly be integrated

into user programs and expert engines by using the in-

house developed simulation library xsim [5]. For example

it is used for closed orbit distortion correction using SVD

and LSQ algorithms.

The kernel and the application programs are not limited

to be operated on one single computer. The database is

ready to be distributed to several computers, each main-

taining a defined range of parameters. Thus, the system can

easily be extended and the overall load can be distributed to

many machines. Since the computer CPU power increased

drastically in the last years, the system is now running on a

single linux personal computer replacing the three old HP

workstations.

Process Layer

The hosts on the control layer are not suitable for direct

hardware communication. Therefore, a new middle layer,

the process layer was introduced. Initially, it consisted of

several VME CPUs running the real time operating system

VxWorks developed by Wind River Systems. All VME

computers are diskless clients booting off from a central

NFS server and are attached to the control host(s) via eth-

ernet. Several years ago, the infrastructure was extended by

a continuously growing number of personal computers sup-

plied with Intel CPUs. These are running an adopted ver-

sion of the original process system software. Furthermore

the process hosts can now be easily extended using cheap

embedded devices using ARM CPUs and ADC boards.

The process system hosts, regardless whether they fea-

ture VME or Intel CPUs, are equipped with several bus in-

terface cards: HDLC, GPIB, serial interfaces (RS-232/RS-

485), CAN-bus and PROFIBUS. Additionally, plug-in

cards for ADCs or DACs are used within several systems.

A set of defined parameters is assigned to each process

layer host during its boot sequence. This includes the struc-

tural information beside the runtime values, again orga-

nized in a shared memory database. Synchronization with

the control hosts is done via network connections using

RPC (TCP) and UDP.

For high level applications running on the control hosts

the explicit assignment of parameter to process hosts is

completely invisible. This transparent design allows mov-

ing the parameters to different hosts without changing the

corresponding application.

Fieldbus and Device Layer

Finally, the last layer includes all interfaces communi-

cating directly with the hardware and the hardware devices

themselves. The wide variety of power supplies is equipped

with in-house developed interface cards. Each I/O board

is directly connected a MACS CPU boards which is con-

nected to the VME systems via an HDLC interface with

1.25 MBd. Furthermore, measured values (analog values

beside binary status variables) are read out from the power

supplies and transmitted back the same way.

In the last years, several PLCs were integrated into the

system. These approximately 15 systems are interfaced via

profibus or profinet (industrial ethernet) and accessible like

any other device from the control system.

EVENT MANAGEMENT

Like already mentioned, direct read and write operations

to the database are achieved by accessing the appropriate

section in shared memory. The event management comes

into place when other applications need to react in case of a

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOBB04

Control System Upgrades

ISBN 978-3-95450-139-7

1397 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



asynchronous synchronous

database

history-

database

application

other
application

psdistributor

csnotify

other
application

network connection
to process layer

signal

socket
database read/write

1

2

4

3

Figure 3: Exemplary event processing triggered by

changed parameter. First the new parameter value gets

written to the shared memory online database (1) and his-

tory database (2), afterwards all applications are notified by

a signal (3). The applications read the new parameter from

the database themselves (4).

changed parameter. At the first level, an asynchronous no-

tification system is implemented (see Fig. 4). Applications

with interest in a particular parameter get signaled by a cus-

tom unix signal after the data got written to the database.

The informed application is now in charge of reading the

changed value itself and react accordingly. Following this

approach an automatic load balancing is done (multiple ap-

plications running on multiple CPU cores). The only bot-

tleneck could be the mutually exclusive access to the shared

memory.

Benchmarks showed up a raw1 read/write rate of approx-

imately 300 k ops/s using a single application. Almost the

same rate is achieved when multiple applications are ac-

cessing the database. During normal operation — typically

3 k to 4 k ops/s — this is no limitation to the performance

of the overall system. Taking network latency into account

(because parameter values need to be transferred to accord-

ing process hosts via ethernet), the maximum write rate (of

a single process on the control host) reduces to approxi-

mately 500 ops/s. The same limitation is valid while trans-

ferring measured values from the process hosts back to the

control hosts. This rate is too low for realtime measure-

ment. Therefore, the measured values get stored into pa-

rameter vectors2 and transferred at a much lower rate.

The mentioned asynchronous notification system is sup-

plemented by a synchronous one. One core application,

csnotify, is attached to the asynchronous notifications and

gets informed on parameter updates. This way, the appli-

cation can re-distribute the notification to all processes at-

1Measured with a parameter not defined on any process system, which

otherwise would decrease the write rate due to network latency.
2The control system does not distinguish between single-value param-

eters and vector ones. A vector is simply a parameter with multiple or-

dered values.

tached to the synchronous notification system. It is used

by applications whose execution cannot be interrupted by

signals.

Logging and Monitoring

Any process host and all attached applications are capa-

ble of sending messages with seven different logging levels

ranging from debug to emergency via network to a central

logger daemon, e.g. in case of failures. Reports in form

of textual messages are generated and visualized within a

graphical error-logger application.

HISTORY DATABASE

The basic control system database is enhanced by a

newly developed additional database engine. It allows the

storage of the history of all parameter values updated either

by the process system (e.g. measured values) or the control

host (e.g. input from menu system). Furthermore there are

several ways to access the data: For example it can be ex-

ported to text files for later processing by external scripts

or be displayed in a graphical history browser (see Fig. 5).

The data amount produced by approximately 3 k to 4 k

update ops/s on parameters is several gigabytes of data per

day. Additionally the data must be stored in a way that

it can be accessed on a per-parameter and per-time range

basis very quickly to display it in the browser application.

The open source database system hypertable is a highly

scalable distributed non relational database which stores its

data as key/value pairs in a physically ordered way. This

approach seems to perfectly fit the requirements for the

database, so it was chosen as the backend. Due to the dis-

tributed layout no new hardware was required, because sev-

eral largely unused hard disks mounted in process system

hosts could be used.

To seal off the core functionality from the external

database system, a new shared memory database, the his-

tory database, was created as an intermediate database for

the history. During the event management, each applica-

tion of the control system is now in charge of writing the

new values to the online database as well as to the history

database (see Fig. 4). The shared memory is read out on

a regular basis (typically 3 seconds interval) and flushed to

the hypertable database. Applications with access to the

parameter history are therefore not required to connect to

the control system.

It is worth the mention that the graphical browser ap-

plication quickly became an integral part of the control

system. It is a perfect tool for monitoring the evolution

of beam parameters (as well as infrastructural parameters)

and even to recall previously used settings. The gui allows

quick navigation in the data by adjusting the axis ranges

using the mouse wheel and allows to navigate the trough

the data by simple drag operations with the mouse. Fur-

thermore the menu system is capable of directly opening

the history browser of a displayed parameter values just by

clicking on it.

THCOBB04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1398C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades



Figure 4: Exemplary screenshot of the history database browser showing the evolution of the measurement of the vertical

closed orbit RMS (blue) in relation to the air temperature (red) inside the storage ring tunnel. The temperature increase

was caused by a malfunction in the cooling system.

SOFTWARE INTERFACES OF THE

CONTROL SYSTEM

Any beam diagnostics relies on an interface to process

the data. At this point, several interfaces to the control

systems database come into place. Automated diagnostics

are mainly outsourced to dedicated C or C++ applications

using the native shared libraries shipped with the control

system. An example for that is the automated real time

measurement of the beam emittance using synchrotron ra-

diation monitors in the stretcher ring. Profile images of the

beam are captured and analyzed on a process host. The

beam width is transfered to the control host on which the

emittance calculation takes place.

Furthermore, beam diagnostics can be easily done with

very high level programming languages. Therefore, an in-

terface to MATLAB has been created. This allows quick

read and write access to any single parameter value or even

vectors. Due to its matrix manipulation capabilities, it is

a convenient tool to perform beam optics calculations. An

example for this is the automated measurement of the op-

tics functions in the external beamline.

Apart from the menu system, graphical tools can be de-

veloped using the well known TCL/TK interface. This of-

fers a quick way to develop new standalone (independent

from the main menu system) graphical applications with

access to the control system.

EPICS based solutions can also be integrated into the

existing control system. To that end, a two-way gateway

interface between EPICS and the control system was set up

on one process host.

Applications not running on any control host or process

host can interact with the database, too. Using a single TCP

connection, the whole parameter database can be accessed.

Even attachment to the notification system is possible. To-

gether with an Android port of the menu system running

on mobile devices this interface can be used to steer the

accelerator from almost everywhere in the world.

REFERENCES

[1] W. Hillert, “The Bonn Electron Stretcher Accelerator ELSA:

Past & Future”, EPJ A s01 (2006) 139.

[2] T. Götz, “Entwicklung und Inbetriebnahme eines verteil-

ten Rechnerkontrollsystems zur Steuerung der Elektronen-

Stretcher-Anlage ELSA, unter besonderer Berücksichtigung

der Anforderungen des Nachbeschleunigungsbetriebes bis

3.5 GeV”, PhD theses, University of Bonn, 1995

[4] M. Picard, “Entwurf, Entwicklung und Inbetriebnahme

eines verteilten Rechnerkontrollsystems für die Elektronen-

Stretcher-Anlage ELSA, unter besonderer Berücksichtigung

der Extraktion im Nachbeschleunigungsbetrieb bis 3.5 GeV”,

PhD theses, University of Bonn, 1995

[3] C. Wermelskirchen, “Das Kontroll- und Steuersystem der

Bonner 3.5 GeV Elektronen-Stretcheranlage ELSA”, PhD

theses, University of Bonn, 1988

[5] J. Wenzel, “Entwicklung und Test eines Simulators der

Teilchenbewegung in der Bonner 3.5 GeV-Elektronen-

Stretcher-Anlage ELSA”, PhD theses, University of Bonn,

1994

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOBB04

Control System Upgrades

ISBN 978-3-95450-139-7

1399 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


