
EVOLUTION OF THE MONITORING IN THE LHCB ONLINE SYSTEM

C. Haen∗, E. Bonaccorsi, N. Neufeld, CERN, Geneva, Switzerland

Abstract
The LHCb online system relies on a large and hetero-

geneous I.T. infrastructure: it comprises more than 2000

servers and embedded systems and more than 200 network

devices. The low level monitoring of the equipment was

originally done with Nagios. In 2011, we replaced the

single Nagios instance with a distributed Icinga setup pre-

sented at ICALEPCS 2011. This paper will present with

more hindsight the improvements we observed, as well as

problems encountered. Finally, we will describe some of

our prospects for the future after the Long Shutdown pe-

riod.

INTRODUCTION
LHCb [1] is one of the four large experiments at the

Large Hadron Collider at CERN. This experiment relies on

a large computing infrastructure to control the Data Acqui-

sition system and the detector, as well as to manage the

data it produces. In addition to the supervision of PLCs

and readout boards done by the SCADA system WinCC, a

lower level monitoring is needed at the system level. Until

2011, a single instance of Nagios [2], an industry standard

monitoring tool, was used to accomplish this task. It was

replaced by a distributed Icinga setup [3], an open source

fork of Nagios, primarily to increase the performance of

our monitoring infrastructure. After two years of usage,

we have a much clearer view of the pros and cons of such

a solution, and the long shutdown period of the LHC is a

good opportunity to look at potential alternatives.

CURRENT INFRASTRUCTURE
A full description of our current setup is visible in [4].

Nagios, Icinga and many other tools, monitor hosts

(servers, switches, etc) and services (software, resources,

etc) by periodically executing light weight programs called

plugins. A plugin will return the status of the resource

(like ’OK’ or ’CRITICAL’) and eventually extra informa-

tion (e.g. error message, performance data). Typically, the

amount of checks to be executed is in the order of tens of

thousands in a few minute interval. This explains that the

monitoring of large environments, like the LHCb one, can-

not be achieved by a single instance of the monitoring soft-

ware, without reaching huge latencies. The latency repre-

sents the difference of time between the scheduled execu-

tion time of the check, and the actual execution time.

For large environments the execution of the checks re-

quires to be parallelized and distributed. The solution ap-

plied in LHCb is to have a central Icinga instance delegate

∗ christophe.haen@cern.ch

the check execution to workers. This is achieved using the

plugin functionality of Icinga: the mod gearman plugin [5]

intercepts the checks scheduled by Icinga and places them

into queues. Remote servers, called workers, running a

gearman client program fetch instructions from the server

queues, execute them, and put the result back in a result

queue. This result queue is treated by the Icinga instance

as if it executed the checks itself. This setup requires the

workers to have the plugins executed by Icinga available

locally. At LHCb, the Icinga server distributes its plugins

with the workers using an NFS share.

By default, Icinga stores the check results in flat files.

They are presented to the user using a CGI based web in-

terface which parses these files. The id2db plugin allows

to dump the monitoring data into a database. An advanced

and flexible web interface makes use of the database and

even offers a REST API. We are using a MySQL database

running on the same server as the Icinga instance.

Users are alerted about problems after they have been

tested faulty a configurable amount of time. The notifica-

tion is made using external plugins, as for the checks. The

most common one is of course the ’mail’ command. To

avoid receiving too many emails, we use Nand[6], which

aggregates emails for ten minutes before sending them all

in only one email. Critical alerts bypass this buffering.

FEEDBACK
The setup previously described has been running since

two years in the LHCb online environment. Although the

general setup remain the same, it was several times slightly

changed. In overall terms, we are happy with this config-

uration, but a two year experience allows us to spot weak-

nesses in it.

Positive Aspects
The very positive aspect of this setup is its performance.

We are running about 40 000 checks in a 5 minute window

with absolutely no latency. This performance is made pos-

sible thanks to mod gearman, which allows us to balance

the check executions over 60 nodes. The server running

the Icinga instance (8 cores @ 2.50 GHz, 16 Gb memory)

could not achieve this in standalone mode.

A nice aspect of mod gearman is the ease of adding new

servers to the pool of workers. It requires very few pack-

ages on the worker side, and no configuration at all on the

server side. It provides a very flexible way to increase the

performance or the redundancy of the check execution.

An intrinsic characteristic of Icinga we are heavily using

in LHCb is the group and inheritance functionalities of the

configuration format. It allows to factorize objects — like

THCOBA01 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1408C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure



hosts and services — definitions. Properly used, it sim-

plifies greatly the configuration management. The schema

put in place for LHCb is such that a set of simple scripts

are enough to manipulate all hosts and services.

The PHP based web interface using the database is a

great improvement compared to the CGI one. The user

experience is better: faster researches, many filters, cus-

tom views, etc. From the administrator perspective, there

are many improvements as well: advanced authentication,

finer grain management of users and permissions, REST

api, etc.

Nand is a good way to leverage the massive amount of

emails that can be produced, and we certainly could not run

without it.

Negative Aspects
The first major flaw is that the Icinga instance is a single

point of failure in our monitoring system. While the num-

ber of workers is enough to handle several failures, a prob-

lem on the central server means a complete unavailability

of our monitoring infrastructure. Redundancy or failover

mechanisms were not included in the original design of

Nagios/Icinga. Moreover, the plugin system does not al-

low to add such functionality. A hand-crafted solution is

to have a second server setup the same way as the first one

but in a “standby mode”. The second server monitors the

first one, and starts up in case of unavailability of the pri-

mary instance. This solution relies on Icinga’s capabilities

only. Another solution would be to use third party tool such

as Pacemaker and Corosync to ensure the failover mecha-

nism. None of these solutions is really satisfying because

we would run into several problems, such as the synchro-

nization of the database backend, the current status being

lost, and the NFS share for the workers to be moved.

It is possible in the configuration to inform Icinga about

the dependencies between hosts and services. Thanks to

this, when several problems occur at the same time because

of a common root cause, you get notified about the root

cause only. System administrators greatly appreciate this

functionality. However, the definition of dependencies is

very tremendous, and several experts reported performance

problems related to them.

A big problem which is encountered with Icinga is in

case of a big failure in the environment. When a big portion

of the infrastructure fails at the same time, Icinga needs a

lot of time to detect all of it and the latency increase tremen-

dously. There is also a knock-on effect with the latency. If

it reaches a high threshold —around 300 s in our setup— it

keeps increasing for ever.

One reproach that could be done to Icinga is that it is

very static. Macros are available in the configuration to re-

fer to various static information such as the host address or

the email of the contact. But a check cannot inquire about

runtime values such as its previous results or the output of

other checks. Another illustration of the static behavior of

Icinga is that the configuration cannot be changed at run-

time – a restart or reload of the process is necessary. This

might be a flaw in environments making heavy use of vir-

tualization.

The critical aspect with having to restart Icinga to change

the configuration is that the parsing of it can be very long.

60 000 services are parsed in about 25 seconds, while

around 8 minutes are required for 200 000 services. The

loading of the configuration in the database backend also

takes several minutes to be completed, making the monitor-

ing system blind for this time. Fortunately, the very latest

version of Icinga (1.9) tackles the loading issue by chang-

ing the implementation, and brings the delay in the order

of seconds.

ALTERNATIVES
Our investigations for the evolution of the LHCb On-

line monitoring setup focused on three options: Nagios4,

Icinga2, Shinken.

Nagios4
Nagios4, presented as a major release but still in beta

version at the time of writing, consists mainly in Core’s per-

formance improvements. Hot spots have been identified in

the design and better algorithms are being implemented —

e.g. for the event queue insertion or the macro resolution.

The philosophy of the Nagios developers is that a heavily

used plugin should be part of the Core. The mod gearman

worker being one of those plugins, Nagios now has worker

processes, but still running on the same server. The config-

uration parsing performance has also been improved.

Thanks to these changes, the developers claim a decrease

of 87% in disk IO operations, -42% of CPU utilization and

-64% of memory consumption, which leads to six times

more checks executed.

The configuration logic changed slightly. If it does

not bring major variations, existing configurations might

silently produce different output than with previous ver-

sion. Users will have to be extremely careful to this.

Shinken
Shinken [7] is the pioneer of the next generation tools. It

keeps the principles of the Nagios-like tools — services ap-

plied to hosts — but is a complete Python rewrite in which

the original logic is extend and the technical design totally

different (Fig. 1). The code is split in modules, each of

them with a specific role, and each module is a different

daemon. There can be as many of each daemon as the

user wishes and spread on different servers. This natu-

rally provides horizontal and vertical scalability and redun-

dancy. Examples of daemon are the Arbiter (reads ands

shares the configuration between Schedulers, manages the

high availability), the Scheduler (schedules the execution

of checks, makes correlation) or the Poller (actively exe-

cutes the checks).

The developers praise the dynamism of the solution

since it makes use of Python’s flexibility. The user can eas-

ily define services whose status are based on other services’

status, using boolean operators or mathematical functions.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOBA01

Control System Infrastructure

ISBN 978-3-95450-139-7

1409 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 1: Shinken architecture.

It also supports clusters with spare parts. Shinken has a na-

tive support for virtualization: it can make use of VMware

tools or libvirt in order to automatically generate depen-

dency rules between the virtual machines (VM) and the

hosting servers. These rules are automatically updated if

the VM is moved.

Shinken can directly use the configuration of Nagios.

However, the logic was extended and new functionalities

added for sake of factorization. For example, contrary

to Nagios, Shinken can apply services to host templates,

which avoids the definitions of groups. Another innovation

is the possibility to apply services on host templates using

complex boolean expressions. By considering templates

as a flat set (e.g. ’linux’, ’MySQL’, ’Apache’) instead of

a hierarchical organization (e.g. ’linuxMySQL’, ’linuxA-

pache’, ’linuxApacheMySQL’, etc) , it reduces the amount

of services to be defined when hosts can have several roles.

Other noticeable facts for the configuration is a ’foreach’

macro to duplicate objects and a flexible discovery system

to generate configuration based on user’s rules and plugins.

Another big difference between Shinken and its an-

cestors is that Shinken is firmly business oriented. The

whole software is meant to provide different features (tools,

views, notifications, etc) to the administrators — who are

more interested in the source of problems — than to the

managers — who focus on the impacts of problems.

Icinga2
At the time of writing, Icinga2 [8] is still in its very early

stages — some features mentioned here are not yet imple-

mented and are still subject to changes. The shortcomings

of Icinga we described in the previous section were expe-

rienced by many users. Fixing these issues would involve

changes which would break the compatibility with Nagios

and the previous versions. For this reason, the develop-

ers decided to go for a parallel development branch, with a

completely new code and approach. Regarding the actual

implementation, they made the choice of C++ with heavy

use of Boost libraries (but no C++11 features). Icinga will

be compatible with Windows.

The first major change for users is that Icinga2 abandons

the single core method. Very similarly to Shinken, Icinga2

Figure 2: Icinga2 architecture.

will be implemented as components which can be loaded

in various instances set up as a cluster (Fig 2).

The configuration is an entirely different approach. Not

only has the grammar changed a lot — a conversion script

is available — but the philosophy of it as well. For exam-

ple, only services can be checked: a command is not any-

more associated to a host to know its state, but the host

takes the status of an associated service. Checks them-

selves will have a different interface, even though the Na-

gios style plugin will remain compatible.

Icinga2 will have an agent running on remote machines

to replace plugins such as NRPE [9]. The reason is security,

which is only an afterthought in NRPE and likes.

A standardize interface to interact with Icinga2 will be

developed. It should provide an easy access to the internal

state, as an input or an output. Plans include new database

backend, configuration or creation of objects at runtime,

auto-discovery of objects and real-time export of events

(e.g. performance data).

Icinga2 will, as Shinken, be more business oriented and

will propose correlation of status using business rules, that

can be used for dependencies for example.

BENCHMARK
While the comparison is currently a bit unfair — Icinga

and Shinken are production solutions, Nagios4 is a beta

version and Icinga2 is at the beginning of its development

— the purpose of this benchmark was to see the raw perfor-

mances of these solutions. We are comparing our present

solution (Icinga and Mod gearman with fine tuning, re-

ferred as icinga gearman) with a tuned setup of Shinken,

and with Nagios4 and Icinga2, both taken out of the box.

The gearman workers were spread over 15 servers but the

three other solutions were running on a single server. The

benchmark was meant to see how were the solutions per-

forming under normal circumstances and under heavy load.

60 000 dummy services were defined on 2000 hosts. The

2000 hosts are in OK state all along. At the startup, the

60 000 services are in OK state. After 1000 seconds, 90%

of the services fail. They all recover at once after another

1000 seconds. The programs start with no historical data.

THCOBA01 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1410C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure



Figure 3 compares the average latency of each solution.
The knock-on problem of Icinga mentioned earlier is
clearly visible. The latency of Nagios4 is null all along,

and so is the one of Icinga2 except at the startup. Shinken

also seems to suffer from big environment failures.

Figure 3: Latency.

Figure 4 compares the total amount of service checks exe-
cuted since the startup of the program. Icinga2 clearly leads

in this domain, and the high latency it has at the startup

could be explained by the steepness of its curve during the

first instants. After the big failure, the amount of checks

executed by Shinken increases in a step manner. It is dif-

ficult to know whether the information is calculated and

published less frequently or if the check execution really

follows that curve.

Figure 4: Servicechecks.

Figure 5 illustrates the speed at which each solution knows
the real state of all services. The curves should reach 60

000 between 0 and 1000 seconds and between 2000 and

3000 seconds. They should drop at 6000 between 1000

and 2000 seconds. Icinga2 proves again to be the fastest.

Nagios4’s curve sticks to the Icinga2 one, except for the

startup checks. Shinken seems to be the slowest, but the

same incertitude as before remains.

This benchmark clearly shows the bottle neck of Icinga,

even when finely tuned and used with mod gearman. Even

though they are not completely mature yet, Nagios4 and

Icinga2 seem to overcome these limitations. On this bench-

mark, Shinken does not seem to perform so well. This

might be explained by the usage of Python compared to

the C++. Further tests should be done to verify if good per-

Figure 5: Reaction time.

formance can be achieved by spreading and multiplying the

components over the infrastructure.

The performance is only one aspect, and the amount of

tools and features available for each tool should be com-

pared before deciding for one or the other. Because Na-

gios4 remains a single core software with no possibility to

distribute and balance the task on several servers, we do not

consider it as a viable alternative. Icinga2 seems the most

promising solution in terms of performance, but one has to

wait for a production version to see what it will be capable

of and what functionalities will be offered. This test does

not exclude Shinken as a potential solution, it just shows

that it cannot be used on a single server. The growing com-

munity, the flexibility, the numerous functionalities and the

good user usability are as many arguments in its favor.

CONCLUSION
After two years of daily usage we could find some flaws

in our monitoring system, both from the administrator’s

and the user’s points of view. We have identified two poten-

tial solutions for future replacement: Icinga2 and Shinken.

The first one, still in its early stages of development, seems

very promising performance wise. It still has to be seen

what will be the user experience with it. Shinken, already

available in a stable version, seems not to perform as well

but the usability and the amount of features are really good.

We will reconsider these solutions when Icinga2 will be

available for production, normally in the coming months.

REFERENCES
[1] A. Augusto Alves et al. The LHCb Detector at the LHC.

JINST, 3:S08005, 2008.

[2] http://www.nagios.org/about

[3] https://www.icinga.org/about/

[4] C. Haen, E. Bonaccorsi, N. Neufeld “Distributed monitoring

system based on Icinga” WEPMU035 ICALEPCS 2011

[5] http://labs.consol.de/lang/de/Nagios/mod-gearman/

[6] https://www.monitoringexchange.org/inventory/Utilities/

AddOn-Projects/Notifications/NAN—Nagios-Notification-

Daemon

[7] http://www.shinken-monitoring.org/

[8] https://www.icinga.org/about/icinga2/

[9] http://nagios.sourceforge.net/docs/nrpe/NRPE.pdf

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOBA01

Control System Infrastructure

ISBN 978-3-95450-139-7

1411 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


