
NOT DEAD YET: RECENT ENHANCEMENTS AND
FUTURE PLANS FOR EPICS VERSION 3*

A.N. Johnson#, J.B. Anderson, ANL, Argonne, IL 60439, USA
M. Davidsaver, BNL, Upton, NY 11973, USA

R. Lange, HZB, 12489 Berlin, Germany

Abstract
The EPICS Version 4 development effort [1] is not

planning to replace the current Version 3 IOC Database or
its use of the Channel Access network protocol in the near
future. Interoperability is a key aim of the V4
development, which is building upon the older IOC
implementation. EPICS V3 continues to gain new
features and functionality on its Version 3.15
development branch, while the Version 3.14 stable branch
has been accumulating minor tweaks, bug fixes, and
support for new and updated operating systems. This
paper describes the main enhancements provided by
recent and upcoming releases of EPICS Version 3 for
control system applications.

BACKGROUND
The first EPICS (Experimental Physics and Industrial

Control System) toolkit was developed at Los Alamos
(LANL) and Argonne (ANL) National Laboratories [2]
and made available for other organizations to use in the
1990s. Up until 2004 other users of the software had to
sign a license agreement with LANL to obtain a copy,
even though many people had by then made significant
contributions to the code-base. Today most EPICS
components can be freely downloaded via the Internet,
and the core software is maintained by the community
and distributed under an open source license [3].

This paper concentrates on the core EPICS software, a
package referred to as EPICS Base, which contains the
Input Output Controller (IOC) implementation and its 29
standard record types, the Channel Access (CA) server
and client libraries with a set of command-line CA client
programs, the EPICS build system, and various support
libraries.

Version Control Branches
The EPICS Base source code is managed using the

Bazaar version control system [4] to record and publish
the code history of the two main branches. New features
and other major developments are added on the 3.15
developer branch, while most commits to the 3.14 stable
are bug fixes and changes needed to build for new or
upgraded operating system versions.

EPICS Version 4 modules have been developed against
the 3.14 branch of Base to date, but will be switching to
the 3.15 branch after the release of version 4.3.0 in order

to take advantage of several new features that only appear
in Base 3.15.

RECENT DEVELOPMENT
Both branches of Base are now rebuilt after every code

commit using a Jenkins Continuous Integration [5] server
at the APS to compile the code for several different target
operating systems. This allows the developers to quickly
discover problems with building their latest changes on
architectures that they may not normally build or even
have access to. Any build failure is immediately sent out
by email to the core developers’ mailing list, and the out-
put from the build process is publicly accessible [6] from
the Jenkins server. The build for the 3.15 branch also runs
the built-in self-test programs on the build host, providing
additional confidence in the state of that code at all times.

Release History
Table 1 below lists the versions of EPICS Base that are

planned or have been released in the last two years.

Table 1: Recent and Planned Base Versions.

Version Release Date Description

3.14.12.1 2011-04-26 Stable, bug fixes

3.14.12.2 2011-12-12 Stable, bug fixes

3.15.0.1 2012-08-01 Developer, major updates

3.14.12.3 2012-12-17 Stable, bug fixes

3.14.12.4 Unreleased Stable, bug fixes

3.15.0.2 Unreleased Developer, new features

3.14 BRANCH
Version 3.14.12.1 fixed a significant bug in the array

handling code of the CA server that was introduced with
the dynamic array support. A few other bugs were also
fixed, largely related to builds for Windows and RTEMS,
and the build configuration files for three new VxWorks
targets were added.

Version 3.14.12.2 fixed many minor bugs, and updated
the build configuration for Apple iOS targets to be able to
build universal binaries on new versions of iOS. The IOC
now performs sanity checks at start-up to ensure that the
menu definitions loaded meet its required standards.

Version 3.14.12.3 fixed several minor bugs and in-
creased the stack space allocated to threads on both
Windows and Posix targets. CALC expressions may now

__

*Work supported by U.S. Department of Energy, Office of Science,
under Contract No. DE-AC02-06CH11357.
#Andrew Johnson <anj@aps.anl.gov>

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC148

Software Technology Evolution

ISBN 978-3-95450-139-7

457 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

use hexadecimal literals (these worked on some target
architectures before, but not all), and the CA server
library now supports sending DBE_PROPERTY monitor
update events. This release also comes with build con-
figuration files to cross-build binaries for Linux running
on a Xilinx Microblaze CPU, and to allow an ARM CPU
running Linux to be used as a build host.

Version 3.14.12.4 has not been released yet, but will
contain more bug fixes, support for VxWorks 6.9, a high-
resolution time provider for MacOS, and a Microsoft
Windows implementation of the epicsLoadLibrary() API.

3.15 BRANCH
The 3.15 developer branch was created in November

2010, immediately after the release of Base 3.14.12. The
Bazaar version control software makes it easy to incorpo-
rate bug fixes and other changes into the 3.15 code after
they have been committed to the 3.14 branch; this is a
manual operation that is typically done every few months
and usually only takes a few minutes to complete.

Early in the life of the branch, the source tree was
reorganized to reduce the number of libraries created and
increase the parallelism available to the GNU make
program at build time. The new layout arranges the
source tree as follows:

· src/tools: Build system scripts
· src/libCom: Utility routines and OS-independent API
· src/template: User application templates
· src/ca/client: CA client library and tools
· src/ca/legacy: Portable CA server
· src/ioc: Core database processing functions
· src/std: Standard record types, soft device support

and the softIoc

The build rules were also modified to further increase
the parallelism by separating out the rules that generate
dependency files. On Symmetric Multi-Processor (SMP)
computer systems the GNU make program can spread the
build over many processors and achieve significant speed-
ups; some developers see serial builds that take 2 minutes
complete in less than 20 seconds using parallel builds.
Achieving this level of parallelism does require accurate
dependency information in the build instructions though.

EPICS Codeathons
Several of the enhancements in the development branch

were developed at EPICS Codeathon meetings [7] held in
2008 at Argonne, 2009 at Brookhaven, 2010 at Diamond
and 2011 at Lawrence Berkeley Lab. These meetings are
designed to encourage code development on EPICS
projects, providing an atmosphere where everyone is
working on EPICS code or writing documentation. By
taking developers out of their home environment they can
be freed up from interruptions or local problems and
allowed to concentrate on specific EPICS development
tasks. The development work described below is limited
to projects that provided code for the 3.15 branch of Base.

One major project from the 2008 Codeathon was to re-
write the IOC’s put-notify functionality to make it more
general; this allowed Asynchronous Soft Channel device
support to be written for input record types that trigger
processing of another chain of records and wait for them
to complete before reading the value through the input
link. The 2008 meeting also saw the implementation of
support for Channel Access over TCP alone, thus permit-
ting CA connections to be tunnelled through a Secure
Shell (ssh) network session.

During the 2009 Codeathon the open source Yet An-
other JSON Library [8] was imported into Base to provide
a standard JavaScript Object Notation (JSON) [9] parser
for EPICS software, and work started on the server-side
filtering subsystem that uses JSON for specifying filters
in CA channel names [10]. The 2009 meeting also began
the development of alarm severity filtering for input
record types, which was completed during the 2010
Codeathon.

The 2010 Codeathon saw the conversion of the EVNT
field from an 8-bit integer to a string, allowing IOC soft
events to be named instead of just numbered. Other devel-
opments cleaned up the values of attributes of secondary
fields and added PCI-bus support to the EPICS hardware
interface library devLib.

In 2011 the Codeathon designed and implemented a
platform-independent API for atomic operations on SMP
architectures, which is needed to optimize EPICS running
on such systems. This meeting also marked the start of a
thread-pool project to provide a general-purpose multi-
threaded work queue subsystem.

Subsequent Development
A major rewrite of the DBD file processing tools into

the scripting language Perl was merged several years after
it had begun. The intention was to make changes and
extensions to the DBD file syntax and semantics easier to
incorporate into future releases.

Some work overhauling the internal APIs for numeric
conversion resulted in the ability to specify scan rates
using units other than seconds; scan menu choices can
now specify any of these units after a number: Hertz or
Hz, seconds, minutes, or hours.

The Macro Substitution and Include program msi has
been enhanced and included with Base. Both this new
version of msi and the IOC’s dbLoadTemplates command
now support setting global macros in substitution files,
and dbLoadTemplates can now take a list of global macro
settings as the second argument on its command line.

The server-side filtering subsystem was finally merged
after a long sporadic development period. This lets any
CA client program ask an IOC server to modify the data
stream delivered to it, without affecting any other clients
connected to the same process variable. Four standard
filters are provided as standard, but additional filters can
be written and installed without making any modifications
to the common IOC software.

The OS-independent thread API provided by Base was
extended to allow applications to register a routine that

MOPPC148 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

458C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

will be called once by every new thread when it first starts
up. This allows sites to implement SMP features like CPU
affinity without modifying the core software. On Linux
systems the EPICS thread name is also set as the Linux
light-weight process name at that time.

Version 3.15.0.1 was released at this point, the first one
issued from the development branch. The zero minor
version number indicated that the code in this release was
not ready for production use in operational control sys-
tems; the first fully tested production-quality release from
this branch will be given the version number 3.15.1.

Since the 3.15.0.1 release various record types have had
enhancements made to them and anachronistic behaviours
removed. The fanout and sequence records now both have
16 links instead of their original 6 and 10 links, respec-
tively. Both the multi-bit binary direct record types now
support non-contiguous bit-masks and behave sensibly
when the OMSL field is changed.

The aai, aao, and waveform record types now support
replacing their array buffer pointer instead of always
having to copy data into a single fixed buffer, which
offers the potential for better performance from IOCs
using large arrays.

A new field named UDFS, which is common to all
record types, was added to set the alarm severity of a
record in an undefined alarm state; this defaults to Invalid
to provide backwards compatibility.

Three new record types have been written to better
support long string data. The lsi (long string input) and lso
(long string output) record types have a VAL field that is
a character array; the printf record type does too, but pro-
vides the ability to convert data read from up to 10 input
links into a printable string. All three record types come
with the usual device support, and stdout, stderr, and
errlog support for the lso and printf types.

Continuing the work to better support SMP systems, a
platform-independent spin-locks API has been added for
situations where the overhead of taking and releasing a
mutex would be too high. The precise semantics required
of the individual platform implementations are still being
debated between the developers.

Future Plans
Several development projects are currently at different

stages of completion and will get merged into the 3.15
branch after successful review. Releases of new 3.15.0.n
versions will occur as the core developers complete new
features and decide to expose the current state of the code
to the wider EPICS community.

The thread-pool and spin-locks features that were des-
cribed above should be completed soon. Additional work
on optimizing EPICS for SMP systems will include the
ability to run multiple Callback subsystem threads at the
same priority, allowing more callback operations to be
run in parallel, so spreading the tasks across the available
CPUs more efficiently.

With DBD files now being processed mostly using Perl
scripts, an effort has begun to incorporate the reference
documentation text for the built-in record types and other

modular code into the actual DBD file that defines them,
and to convert this text into HTML documentation at
compile time. There are two major aspects to this project,
implementing the conversion process in Perl, and then
importing the existing record documents into the DBD
files. The first part is mostly complete, but the current
record reference documentation needs rewriting to bring it
up to date, which is likely to take some time to complete.

The IOC database lock-set implementation is likely to
undergo changes to allow monitor updates to provide
coherent sets of data, allowing values to be fetched sim-
ultaneously from multiple records that may be in different
lock-sets. This will provide some functionality needed for
the EPICS V4 development effort.

Record links are not currently modular, so adding a
new kind of link is not an easy task. A desire to rectify
this limitation has triggered a number of minor changes to
date, and more work along these lines is planned.

CONCLUSIONS
Development of EPICS Version 3 continues alongside

the Version 4 development effort, adding new features to
the toolkit and extending the capabilities made available
to its users, who are the developers of EPICS-based
control systems at facilities and companies around the
world. Without significant dedicated developer effort pro-
gress has often been slow, but the software is a long way
from dying [11]. The EPICS collaboration continues to
attract new projects and users, most of whom contribute
back to the community in one way or another.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the contributions

of all EPICS core developers and past EPICS Codeathon
participants who have worked on the continued develop-
ment of EPICS Base.

REFERENCES
 [1] T. Korhonen et al., “EPICS Version 4 Progress Report,”

TUCOCB04, these proceedings.
 [2] L.R. Dalesio et al., “EPICS Architecture,” proc. of

ICALEPCS’91, pp. 278-282 (1991).
 [3] EPICS Open License;

http://www.aps.anl.gov/epics/license/open.php
 [4] Bazaar version control system;

http://bazaar-vcs.org/
 [5] Jenkins continuous integration server software;

http://jenkins-ci.org/
 [6] EPICS builds at the APS Jenkins server;

https://jenkins.aps.anl.gov/view/EPICS%20Jobs/
 [7] EPICS Codeathons web-page;

http://www.aps.anl.gov/epics/meetings/codeathon.php
 [8] Lloyd Hilaiel, Yet Another JSON Library;

http://lloyd.github.io/yajl/
 [9] JavaScript Object Notation; http://json.org/
[10] A. Johnson and R. Lange, “Evolutionary plans for EPICS

version 3,” proc. of ICALEPCS 2009, WEA003, p. 364
(2009).

[11] “Monty Python and the Holy Grail” Scene 2, Python
(Monty) Pictures, 1974.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC148

Software Technology Evolution

ISBN 978-3-95450-139-7

459 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

