
PLUGIN-BASED ANALYSIS FRAMEWORK FOR LHC
POST-MORTEM ANALYSIS

R. Gorbonosov, G. Kruk, M. Zerlauth, V. Baggiolini, CERN, Geneva, Switzerland

Abstract

Plugin-based software architectures [1] are extensible,
enforce modularity and allow several teams to work in
parallel. But they have certain technical and
organizational challenges, which we discuss in this paper.

We gained our experience when developing the Post-
Mortem Analysis (PMA) system, which is a mission-
critical system for the Large Hadron Collider (LHC). We
used a plugin-based architecture with a general-purpose
analysis engine, for which physicists and equipment
experts code plugins containing the analysis algorithms.
We have over 45 analysis plugins developed by a dozen
of domain experts.

This paper focuses on the design challenges we faced
in order to mitigate the risks of executing third-party
code: assurance that even a badly written plugin doesn't
perturb the work of the overall application; plugin
execution control which allows to detect plugin
misbehaviour and react; robust communication
mechanism between plugins, diagnostics facilitation in
case of plugin failure; testing of the plugins before
integration into the application, etc.

INTRODUCTION

The Post-Mortem Analysis (PMA) is a mission-
critical system for safe operation of the Large Hadron
Collider (LHC). Its main goal is to perform an exhaustive
analysis of the behaviour and state of the key LHC
components (power converters, quench protection
systems, interlock systems, collimators, beam-loss
monitors, kickers and many others) in the event of a
beam dump and decide if it is safe to continue operation.
Detailed domain knowledge about the aforementioned
components is necessary to perform the analysis. Because
there is no single team possessing sufficient expertise
about all the LHC components, we decided to delegate
the coding of analysis algorithms to domain experts. In
other words, domain experts write software components
(“plugins”) with analysis algorithms, and the core PMA
team provides the general-purpose analysis engine to
execute these plugins.

Requirements and Constraints

A plugin-based architecture enforces design and
implementation decisions that both mitigate the risks of
executing third-party code and simplify the
implementation of plugins. In the case of the PMA this is
absolutely vital since domain experts providing the
analysis plugins are not professional programmers, and
are therefore prone to make programming mistakes.

Another requirement which affected the design and
implementation of the PMA is that to yield the overall

result the plugins need to be executed in the right order
and they need to communicate with each other, e.g. a
subsequent plugin needs to be able to consume the output
of previous plugins.

Workflow

The PMA workflow is shown in Fig. 1. Each box
represents an analysis plugin. Typically (but not
necessarily) the leftmost plugins focus on a single domain
(power converters, collimators, etc.). The main purpose
of these plugins is to filter out all the normal data since
such data is not interesting for problem detection. The
plugins in the middle represent cross-domain analysis.
These plugins consume the results of single-domain
analysis and perform data correlation in order to find
discrepancies. At the right there are one or several
plugins producing overall result(s) of the analysis.

Figure 1: PMA workflow.

PROBLEMS, RISKS AND SOLUTIONS

This section describes problems and risks we faced as
well as design and implementation solutions we have put
in place to deal with those problems and risks. All the
decisions are guided by 2 main principles:
1. lack of domain experts programming experience

should not compromise overall system stability and
reliability

2. implementation of analysis plugins should be made as
simple as possible, domain experts should be able to
focus on their business-logic only

Plugins Execution

As described above, the PM analysis plugins are
executed in a well-defined sequence where each plugin
waits for the relevant data to be ready before starting the
execution.

A simplistic approach to implement this behaviour
could be to simply link together the plugins using the
observer (or any other notification) pattern. In this design,
analysis plugins execute in a pretty autonomous manner.
They notify each other once they produce data and each
plugin decides itself when it has all the required data to
start execution (Fig. 2a). Although this approach seems

…
…

single
domain

single
domain

single
domain

cross
domain

cross
domain

overall
result

MOPPC143 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

446C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

quite natural at first sight, it violates both guiding
principles. It violates the first one because if (due to a
programming error) the first analysis plugin logic fails
with an exception, and does not send any notification to
the other plug-ins, those plugins do not start and the
whole analysis execution gets stuck. It violates the
second principle because in addition to writing their
analysis code, the domain experts have to write code to
keep track of incoming data and to send notifications.

In our PMA design, it is the framework that controls
the analysis execution entirely (Fig. 2b). The framework
triggers the execution of a plugin and monitors its
progress. Once a plugin has finished executing,
successfully or with exception, the framework takes over
and calculates which plugin(s) should be triggered next,
and so on. This guarantees the execution of all the
analysis logic and simplifies the code of plugins.

Figure 2a:
Simplistic approach.

Figure 2b:
PMA approach.

So far we have described how the PMA framework
deals with a plugin that throws an exception. There are
several ways a badly written plugin can fail: it can block,
access resources or services (ex. file system, database,
etc.) too often or even start producing an enormous
number of result data (e.g. if it ends up executing an
infinite loop).

A simplistic approach would let analysis code access
the resources and services directly (Fig. 3a). Being the
simplest first attempt such approach however violates the
first guiding principle: if an analysis plugin is stuck in an
infinite loop it will never finish, the dependent plugins
will never be triggered and the whole analysis execution
is compromised. If an analysis plugin overloads services
used by other plug-ins it can potentially bring the services
down, thus preventing other analysis logic from finishing
successfully.

Figure 3a:
Simplistic approach.

Figure 3b:
PMA approach.

In the PMA framework, each analysis plugin is
executed in a separate thread – this guarantees that a
blocked plugin does not stop the overall analysis
execution. Also, the framework does not give analysis
plugins direct access to any resources or services (Fig.
3b). Instead plugins are executed in a special
environment which provides access to resources and
services via proxies. Those proxies can intercept calls of
the plugin to external resources and allow the framework
to abort the plugin if any misbehaviour is detected.

Inter-Plugin Communication

As mentioned, analysis plugins should be able to
consume results of other plugins. In order to make such
communication reliable, it is necessary to define a clear
data contract between communicating plugins:
- the data container and data format to use: the

consuming plugin should know how to fetch the
necessary information from the incoming data
container (ex. XML, JSON, collection of individual
information pieces, hash maps, etc.)

- the data content: which information is expected and
how it is represented (ex. strings, numbers, functions,
etc.)

The first simplistic approach is to allow for a very
loose contract, where each plugin just produces data in its
own data format. While this is flexible for each data
producer, it is very chaotic and redundant for the overall
system: a consumer plugin has to use specific code for
each plugin it receives data from.

A better approach is to define a standard data
container shared by all plugins: this at least standardizes
the way the information is accessed. The standard
container should be flexible enough to accommodate all
possible sizes and types of information (currents, beam-
losses, images, etc.) produced by different plugins. It is
clear that usually standardization and flexibility
contradict each other. In PMA we’ve chosen maps with
key-value pairs as data containers exchanged between
plugins.

However, a standard flexible data container still gives
no guarantee that the content of the data container is valid
and complete. This can produce quite misleading results.
For example, Fig. 4 shows two plugins communicating
with each other. The plugin at the left has finished
successfully but it has produced incomplete data. The
data is consumed by the plugin at the right which fails
because of this missing information. The problem is
detected in the right-hand (consumer) plugin but in reality
the root cause of the problem lies in the left-hand
(producer) plugin. This example breaks the first guiding
principle of PMA development mentioned above.

Figure 4: Exchange of incomplete data.

finished

throws
exception

waits
forever

finished

throws
exception

starts

PM
A

fr
am

ew
or

k

analysis
plug-in

analysis
data store DB

external
services

execution
log

analysis
plug-in

analysis
data store DB

external
services

execution
log

PMA execution

environment

throws
exception

produces
incomplete

result

data container
with missing data

Plugins Misbehaviour

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC143

Software Technology Evolution

ISBN 978-3-95450-139-7

447 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Another problem of using simple key-value maps

appears while developing a consuming plugin: the
developer has no clear idea which information is included
in the data container and in which form. He has to talk to
the other plugin developer (if possible) or examine the
code of the producer plugin, which is cumbersome and
error-prone. This complicates the task of the plugin
developer a lot, thus breaking the second guiding
principle.

In order to ensure a clear contract between plugins in
PMA, map data containers are wrapped into a data-
specific Java class known as a “Java bean” [2] (Fig. 5).

Figure 5: Java bean wrapper over map data container.

The Java beans capture the data contract: they have a
getter/setter for every piece of information in the data
container as well as generic logic checking the data
correspondence to the contract: presence of all the
information pieces and their correct representation
(strings, numbers, arrays, etc.). With tools provided as
part of the PM framework, the beans are generated
automatically based on a sample data – so they don’t
require any routine coding.

With Java beans, the PMA framework can at runtime
check the consistency of the produced data thus eliminate
the confusion shown in Fig. 4. In addition, the developer
of a consuming plugin gets the full power of compilation
check and IDE code-completion.

Versioning of Data Contracts

Over time, the information produced by plugins can
evolve, which means that the data contract has to evolve
too. At the same time it must be still possible to process
the data form the past. For example, we have the
requirement to be able to re-analyse the beam dumps
from several years ago, typically with improved analysis
logic or after fixing bugs.

A simplistic approach to deal with such requirement
is to force plugin developers to make their logic capable
of dealing with different versions of data contracts. This
approach however definitely makes the task of plugin
developers more difficult thus violating the second
guiding principle.

To simplify the work of plugin developers, the PMA
framework uses only the latest data contracts. But the
data producers are required to provide converters every
time they change their data format. These converters
transform old data into the latest data contract, thus
making it again usable by the latest version of the PMA
framework.

Plugin Testing

After a plugin is developed and unit-tested it is
necessary to test it in a real runtime environment before it
can be deployed into the production environment.

The first approach could be just to deploy it into a
development version of the application and run some
tests there. However, it is extremely difficult (especially
for a non-professional programmer) to debug problems in
a remotely running application. Also, every re-
deployment, even to a development version of the
application, usually requires an intervention of the PMA
team, leading to an additional overhead.

To deal with this problem the PMA framework
provides plugin developers with a test environment which
should be used before deploying plugins into a
development version of the application. The test
environment simulates the real application and provides
read-only access to all the resources and services
available in the real application. It also allows using fake
data to simulate different test-cases. The plugin
developers can use the test environment locally profiting
from all the debugging options provided by their IDE.

CONCLUSIONS AND OUTLOOK

The PMA framework has been used operationally for
several years and proved to be very extensible, flexible
and reliable. At CERN there are currently 4 mission-
critical LHC applications based on the PMA framework:
Global PMA [3], Injection Quality Check [4], External
Post-Operational Check of LHC beam-dump system [5]
and Powering Event Analysis. In total there are over 45
analysis plugins developed by a dozen of domain experts.
Such a broad adoption would have never been possible
without a plugin-oriented architecture and the design
decisions described in this article.

A new area of work is to put in place a mechanism to
hot-swap new versions of analysis modules without
restarting the whole analysis application. Yet another
functionality to work on is the implementation of
automated tests in the real application for each module
based on a set of incoming data representing possible
use-cases.

REFERENCES

[1] http://en.wikipedia.org/wiki/Plugins
[2] http://www.oracle.com/technetwork/java/javase/docu

mentation/spec-136004.html
[3] M. Zerlauth et al, “The LHC Post Mortem Analysis

Framework”, TUP021, ICALEPCS 2009, Kobe,
Japan.

[4] L. N. Drosdal et al, “Automatic Injection Quality
Checks for the LHC”, WEPMU011, ICALECS 2011,
Grenoble, France.

[5] N. Magnin et al, “External Post-Operational Checks
for the LHC Beam Dumping System”, WEPMU023,
ICALECS 2011, Grenoble, France.

Java bean:
double getCurrent()
String getMode()
String[] getFaults()
checkConsistency()

Map data container:
current: 25.8
mode: “ON”
faults: [“A”,“B”,“C”]

MOPPC143 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

448C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

