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Abstract 
 

Plugin-based software architectures [1] are extensible, 
enforce modularity and allow several teams to work in 
parallel. But they have certain technical and 
organizational challenges, which we discuss in this paper. 

We gained our experience when developing the Post-
Mortem Analysis (PMA) system, which is a mission-
critical system for the Large Hadron Collider (LHC). We 
used a plugin-based architecture with a general-purpose 
analysis engine, for which physicists and equipment 
experts code plugins containing the analysis algorithms. 
We have over 45 analysis plugins developed by a dozen 
of domain experts.  

This paper focuses on the design challenges we faced 
in order to mitigate the risks of executing third-party 
code: assurance that even a badly written plugin doesn't 
perturb the work of the overall application; plugin 
execution control which allows to detect plugin 
misbehaviour and react; robust communication 
mechanism between plugins, diagnostics facilitation in 
case of plugin failure; testing of the plugins before 
integration into the application, etc. 

 
INTRODUCTION 

 

The Post-Mortem Analysis (PMA) is a mission-
critical system for safe operation of the Large Hadron 
Collider (LHC). Its main goal is to perform an exhaustive 
analysis of the behaviour and state of the key LHC 
components (power converters, quench protection 
systems, interlock systems, collimators, beam-loss 
monitors, kickers and many others) in the event of a 
beam dump and decide if it is safe to continue operation. 
Detailed domain knowledge about the aforementioned 
components is necessary to perform the analysis. Because 
there is no single team possessing sufficient expertise 
about all the LHC components, we decided to delegate 
the coding of analysis algorithms to domain experts. In 
other words, domain experts write software components 
(“plugins”) with analysis algorithms, and the core PMA 
team provides the general-purpose analysis engine to 
execute these plugins.  
 
Requirements and Constraints 
 

A plugin-based architecture enforces design and 
implementation decisions that both mitigate the risks of 
executing third-party code and simplify the 
implementation of plugins. In the case of the PMA this is 
absolutely vital since domain experts providing the 
analysis plugins are not professional programmers, and 
are therefore prone to make programming mistakes.  

Another requirement which affected the design and 
implementation of the PMA is that to yield the overall 

result the plugins need to be executed in the right order 
and they need to communicate with each other, e.g. a 
subsequent plugin needs to be able to consume the output 
of previous plugins. 
 
Workflow 

 

The PMA workflow is shown in Fig. 1. Each box 
represents an analysis plugin. Typically (but not 
necessarily) the leftmost plugins focus on a single domain 
(power converters, collimators, etc.). The main purpose 
of these plugins is to filter out all the normal data since 
such data is not interesting for problem detection. The 
plugins in the middle represent cross-domain analysis. 
These plugins consume the results of single-domain 
analysis and perform data correlation in order to find 
discrepancies. At the right there are one or several 
plugins producing overall result(s) of the analysis. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: PMA workflow. 
 
PROBLEMS, RISKS AND SOLUTIONS 

 

This section describes problems and risks we faced as 
well as design and implementation solutions we have put 
in place to deal with those problems and risks. All the 
decisions are guided by 2 main principles: 
1. lack of domain experts programming experience 

should not compromise overall system stability and 
reliability 

2. implementation of analysis plugins should be made as 
simple as possible, domain experts should be able to 
focus on their business-logic only 
 

Plugins Execution 
 

As described above, the PM analysis plugins are 
executed in a well-defined sequence where each plugin 
waits for the relevant data to be ready before starting the 
execution.  

A simplistic approach to implement this behaviour 
could be to simply link together the plugins using the 
observer (or any other notification) pattern. In this design, 
analysis plugins execute in a pretty autonomous manner. 
They notify each other once they produce data and each 
plugin decides itself when it has all the required data to 
start execution (Fig. 2a). Although this approach seems 
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quite natural at first sight, it violates both guiding 
principles. It violates the first one because if (due to a 
programming error) the first analysis plugin logic fails 
with an exception, and does not send any notification to 
the other plug-ins, those plugins do not start and the 
whole analysis execution gets stuck. It violates the 
second principle because in addition to writing their 
analysis code, the domain experts have to write code to 
keep track of incoming data and to send notifications.  

In our PMA design, it is the framework that controls 
the analysis execution entirely (Fig. 2b). The framework 
triggers the execution of a plugin and monitors its 
progress. Once a plugin has finished executing, 
successfully or with exception, the framework takes over 
and calculates which plugin(s) should be triggered next, 
and so on. This guarantees the execution of all the 
analysis logic and simplifies the code of plugins. 
 
 
 
 
 
 

Figure 2a: 
Simplistic approach. 

Figure 2b: 
PMA approach. 

 

 

So far we have described how the PMA framework 
deals with a plugin that throws an exception. There are 
several ways a badly written plugin can fail: it can block, 
access resources or services (ex. file system, database, 
etc.) too often or even start producing an enormous 
number of result data (e.g. if it ends up executing an 
infinite loop).  

A simplistic approach would let analysis code access 
the resources and services directly (Fig. 3a). Being the 
simplest first attempt such approach however violates the 
first guiding principle: if an analysis plugin is stuck in an 
infinite loop it will never finish, the dependent plugins 
will never be triggered and the whole analysis execution 
is compromised. If an analysis plugin overloads services 
used by other plug-ins it can potentially bring the services 
down, thus preventing other analysis logic from finishing 
successfully. 

 
 
 
 
 
 
 
 

 
 

Figure 3a: 
Simplistic approach. 

Figure 3b: 
PMA approach. 

 

In the PMA framework, each analysis plugin is 
executed in a separate thread – this guarantees that a 
blocked plugin does not stop the overall analysis 
execution. Also, the framework does not give analysis 
plugins direct access to any resources or services (Fig. 
3b). Instead plugins are executed in a special 
environment which provides access to resources and 
services via proxies. Those proxies can intercept calls of 
the plugin to external resources and allow the framework 
to abort the plugin if any misbehaviour is detected. 
 
Inter-Plugin Communication 

 

As mentioned, analysis plugins should be able to 
consume results of other plugins. In order to make such 
communication reliable, it is necessary to define a clear 
data contract between communicating plugins: 
- the data container and data format to use: the 

consuming plugin should know how to fetch the 
necessary information from the incoming data 
container (ex. XML, JSON, collection of individual 
information pieces, hash maps, etc.) 

- the data content: which information is expected and 
how it is represented (ex. strings, numbers, functions, 
etc.) 

 

The first simplistic approach is to allow for a very 
loose contract, where each plugin just produces data in its 
own data format. While this is flexible for each data 
producer, it is very chaotic and redundant for the overall 
system: a consumer plugin has to use specific code for 
each plugin it receives data from. 

A better approach is to define a standard data 
container shared by all plugins: this at least standardizes 
the way the information is accessed. The standard 
container should be flexible enough to accommodate all 
possible sizes and types of information (currents, beam-
losses, images, etc.) produced by different plugins. It is 
clear that usually standardization and flexibility 
contradict each other. In PMA we’ve chosen maps with 
key-value pairs as data containers exchanged between 
plugins. 

However, a standard flexible data container still gives 
no guarantee that the content of the data container is valid 
and complete. This can produce quite misleading results. 
For example, Fig. 4 shows two plugins communicating 
with each other. The plugin at the left has finished 
successfully but it has produced incomplete data. The 
data is consumed by the plugin at the right which fails 
because of this missing information. The problem is 
detected in the right-hand (consumer) plugin but in reality 
the root cause of the problem lies in the left-hand 
(producer) plugin. This example breaks the first guiding 
principle of PMA development mentioned above. 

 
 

 
 

Figure 4: Exchange of incomplete data. 
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Another problem of using simple key-value maps 

appears while developing a consuming plugin: the 
developer has no clear idea which information is included 
in the data container and in which form. He has to talk to 
the other plugin developer (if possible) or examine the 
code of the producer plugin, which is cumbersome and 
error-prone. This complicates the task of the plugin 
developer a lot, thus breaking the second guiding 
principle. 

In order to ensure a clear contract between plugins in 
PMA, map data containers are wrapped into a data-
specific Java class known as a “Java bean” [2] (Fig. 5).  

 

 
 
 
 
 
 
 
 

Figure 5: Java bean wrapper over map data container. 
 

The Java beans capture the data contract: they have a 
getter/setter for every piece of information in the data 
container as well as generic logic checking the data 
correspondence to the contract: presence of all the 
information pieces and their correct representation 
(strings, numbers, arrays, etc.). With tools provided as 
part of the PM framework, the beans are generated 
automatically based on a sample data – so they don’t 
require any routine coding. 

With Java beans, the PMA framework can at runtime 
check the consistency of the produced data thus eliminate 
the confusion shown in Fig. 4. In addition, the developer 
of a consuming plugin gets the full power of compilation 
check and IDE code-completion. 

 
Versioning of Data Contracts 

 

Over time, the information produced by plugins can 
evolve, which means that the data contract has to evolve 
too. At the same time it must be still possible to process 
the data form the past. For example, we have the 
requirement to be able to re-analyse the beam dumps 
from several years ago, typically with improved analysis 
logic or after fixing bugs. 

A simplistic approach to deal with such requirement 
is to force plugin developers to make their logic capable 
of dealing with different versions of data contracts. This 
approach however definitely makes the task of plugin 
developers more difficult thus violating the second 
guiding principle. 

To simplify the work of plugin developers, the PMA 
framework uses only the latest data contracts. But the 
data producers are required to provide converters every 
time they change their data format. These converters 
transform old data into the latest data contract, thus 
making it again usable by the latest version of the PMA 
framework. 

 
Plugin Testing 

 

After a plugin is developed and unit-tested it is 
necessary to test it in a real runtime environment before it 
can be deployed into the production environment. 

The first approach could be just to deploy it into a 
development version of the application and run some 
tests there. However, it is extremely difficult (especially 
for a non-professional programmer) to debug problems in 
a remotely running application. Also, every re-
deployment, even to a development version of the 
application, usually requires an intervention of the PMA 
team, leading to an additional overhead. 

To deal with this problem the PMA framework 
provides plugin developers with a test environment which 
should be used before deploying plugins into a 
development version of the application. The test 
environment simulates the real application and provides 
read-only access to all the resources and services 
available in the real application. It also allows using fake 
data to simulate different test-cases. The plugin 
developers can use the test environment locally profiting 
from all the debugging options provided by their IDE. 

 
CONCLUSIONS AND OUTLOOK 

 

The PMA framework has been used operationally for 
several years and proved to be very extensible, flexible 
and reliable. At CERN there are currently 4 mission-
critical LHC applications based on the PMA framework: 
Global PMA [3], Injection Quality Check [4], External 
Post-Operational Check of LHC beam-dump system [5] 
and Powering Event Analysis. In total there are over 45 
analysis plugins developed by a dozen of domain experts. 
Such a broad adoption would have never been possible 
without a plugin-oriented architecture and the design 
decisions described in this article.  

A new area of work is to put in place a mechanism to 
hot-swap new versions of analysis modules without 
restarting the whole analysis application. Yet another 
functionality to work on is the implementation of 
automated tests in the real application for each module 
based on a set of incoming data representing possible 
use-cases. 
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Java bean: 
double getCurrent() 
String getMode()  
String[] getFaults() 
checkConsistency() 

Map data container: 
current: 25.8 
mode: “ON” 
faults: [“A”,“B”,“C”] 
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