
GROOVY AS DOMAIN-SPECIFIC LANGUAGE
IN THE SOFTWARE INTERLOCK SYSTEM

J. Wozniak, M. Polnik, G. Kruk, CERN, Geneva, Switzerland

Abstract

After over 7 years in operation the Software Interlock
System (SIS) has become an indispensable and mission-
critical controls tool covering many operational areas
from general machine protection to diagnostics. The
growing number of running instances as much as the size
of existing configurations have increased both the
complexity and maintenance cost of running the SIS
infrastructure. In response to those issues, new ways of
configuring the system have been investigated aiming at
simplifying the configuration process by making it faster,
more user friendly and understandable for wider
audiences and domain experts alike. As one of the
possible choices the Groovy scripting language has been
considered as being particularly well suited for writing a
custom Domain-Specific Language (DSL) due to its built-
in language features like native syntax constructs,
command chain expressions, hierarchical structures with
builders, closures or Abstract Syntax Tree (AST)
transformations. This document explains best practices
and lessons learned while introducing an accelerator
physics domain oriented DSL language for the
configuration of the Software Interlock System developed
by the Data & Application Section at CERN.

THE SIS PROJECT
The Software Interlock System (SIS) is part of the

overall Machine Protection systems’ group of
applications. It helps protect the machine by surveying
the state of a set of devices. At each evaluation, it
performs a number of checks (conditions) and dumps or
inhibits the beam production if an abnormal situation is
discovered. The basic checks, called Individual Software
Interlock Channels (ISICs), usually compare the reading
from a device with a predefined threshold or range of
values (like temperature < 50 deg. Celsius). Several
ISICs with some logical or geographical relationship can
be grouped into a so-called Logical Software Interlock
Channels (LSICs). The state of an LSIC corresponds to
the result of a logical operation applied on the state of all
of its dependent ISICs. The logical operation may be any
combination of AND, OR and NOT operators. The state
of each LSIC is either TRUE or FALSE. All the ISICs
and LSICs together with a root node, called Permit, form
the structure of a logical tree. The evaluation of the tree is
fired by a predefined periodic event, and the outcome is
used to act on external systems. SIS was designed to
protect the machines against repetitive faulty conditions
thus limiting damage caused by radiation or other harmful

states, thus extending the equipment lifetime and making
the machine diagnostics much easier. The interested
reader can refer to [1] for more information about the SIS
itself.

 DOMAIN-SPECIFIC LANGUAGES
A DSL is a type of computer language or specification

language used in a domain (banking, physics, medicine,
controls, etc.) to solve or describe a particular domain
problem or area of interest. Using DSLs instead of
general-purpose languages allows a particular type of
problem or solution to be expressed in terms closer to the
language used by the end users of the system that are not
necessarily computer scientists or programmers [2].

MOTIVATION
The growing number of SIS instances as well as the

complexity of each configuration has induced an
increased cost of maintenance. The original choice of
XML for the configuration of SIS had to be extended by
other techniques in order to overcome its limitations.
Being originally designed as a document description
language, XML is not well suited to accommodate
conditional logic. The definition of a Boolean condition,
although still possible in XML, makes the document
verbose and difficult to read. For that reason SIS allows
to define complex conditions as Java classes or Groovy
scripts. Typical language constructs like file includes,
variables, loops or if/else statements were also allowed in
the SIS configuration files, as the configuration usually
consists of a repetitive number of similar conditions
multiplied by the number of devices of a given class (like
power-converters). These features were implemented
using the Velocity template language that was used to
pre-process and generate the final XML files. In
summary, the current typical configuration of a SIS
instance is a mixture of Velocity statements, XML tags,
Groovy scripts and references to Java classes. This
mixture of languages makes it difficult to read,
understand and maintain the configuration of an SIS
instance. Furthermore, the configuration file is a static
entity that gets processed in runtime postponing error
detection to the very last moment, at system startup. A
comparable DSL [4] solution could possibly improve this
situation by using a compiled language with IDE facilities
like support for syntax highlighting and code completion.
A well-designed DSL could unify all the previously
mentioned requirements within a unique language having

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC142

Software Technology Evolution

ISBN 978-3-95450-139-7

443 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

both the domain specific syntax and the host language
syntax available at the same time. A number of different
possible options have been taken into account like
external versus internal DSLs [2], and Groovy versus
Scala languages [6, 7]. Finally we selected Groovy for its
syntax and binary compatibility with Java, its relatively
shallow learning curve, its built-in DSL features and
previous experience with the language.

IMPLEMENTATION
The implementation of DSL solutions does not differ

from well-established practices in computer languages
processing. It can be implemented using an interpreter or
applying a multi-phase compilation process. The first,
simpler approach is sufficient in most applications that
leverage a DSL for configuration. However, some
scenarios may require executing the user-defined logic at
the speed that only a compiled language can provide.
These separate goals of interpretation and compilation are
reflected in the market. Although Java can execute its
source code provided at runtime using the Java 7.0
Compiler API, it is not the right tool. Dynamic languages
were designed to allow for the extension and modification
of a program in run time. Groovy is a dynamic language
that provides a set of built-in solutions for defining DSLs,
and allows the programmer to build systems that combine
the efficiency of precompiled code with the flexibility of
interpreted code in one, unified tool.

GROOVY FEATURES
Groovy supports seamless integration with Java. A

Groovy source code file can reference or extend Java
classes. It is even possible to cross-reference both Java
and Groovy code. This is particularly important in
applications that require high level of customization by
allowing runtime configuration, and running client-side
logic. Successful examples are software build systems or
development frameworks [3, 5].

In terms of usability features, syntax highlighting and
IDE assistance are two of the most notable features for
replacing XML with Groovy. Additionally, Groovy
provides a built-in framework for defining internal DSLs
and the ability to customize the compilation process.
Embedded DSLs in Groovy are defined in a similar way
to controllers in web application frameworks. The
language designer is responsible for providing a set of
keywords associated with methods that should be called
when the token is encountered. The names of the
keywords and methods do not have to correspond to each
other. For transforming the logic expressed in textual
form into its object code representation, Groovy provides
the builder entity. It processes the input file line by line
and executes predefined actions associated with a
particular token. Apart from the semantics specified by
the DSL keywords, files may contain Groovy source code
blocks known as Closures [6]. This feature can be
leveraged to create highly customizable applications open
for user-defined logic. Closures are extensively used for

defining update events and conditions in the SIS
framework. The expressiveness of the DSL language is
not solely determined by the size of the supported
keyword set, which depends on the domain complexity,
but also on the flexibility of its operators. The Java
specification does not support operator overloading which
forces developers to use methods instead. Operator
overriding is allowed in Groovy, thus improving the
readability of DSL code by reducing the overhead of the
method calling syntax. On the other hand, the total
number of operators is limited to the ones defined by the
language.

The SIS DSL provides easy access to application
components and the status of the accelerator devices.
Some applications may require functionalities concerning
validation checks or code instrumentation that go beyond
the scope of the language grammar. Defining additional
processing logic weaved during the compilation phase
may cover such advanced scenarios. For this purpose, the
Groovy compiler supports Abstract Syntax Tree (AST)
transformations. In particular, the SIS project intercepts
the semantic analysis stage of the compilation process to
associate compiled scripts containing user-defined logic
with their original source code for future reference in the
presentation layer. It allows the users to consult the script
content of the conditions in the graphical interface of the
system.

DSL WORKFLOW IN SIS
The SIS framework provides a DSL solution for

defining the safety constraints governing a system, and
for wiring up the application components. The
configuration workflow is as follows. The users of the
SIS framework define the configuration of the system in a
set of files written in both DSL and Groovy. The
configuration files describe the connections between
application components and the conditions that must be
satisfied for running the system safely. There are no
restrictions concerning the programming logic used in the
conditions: they can perform computations, access system
components or check the status of devices using features
provided in DSL. When the application starts, the
configuration is compiled to a single script class and
individual conditions are compiled to separate inner
classes. Assuming there were no errors in the compilation
process, the script is executed to create a tree-like object
representation of the configuration. This intermediate
structure will be used to instantiate, configure and wire
the components of the SIS application.

EXAMPLE
The following two snippets present the configuration of

the same, simple application written in the SIS
framework. The protected system is considered to be safe
if all the values observed by its sensors are below fixed
thresholds. When this condition is broken, an action
implemented by the provided exporter is executed.

MOPPC142 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

444C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Configuration in XML
#set($virtualDev	
 =["BZZ.VSISDEV1",	

"BZZ.VSISDEV2","BZZ.VSISDEV3"])	

#set($hardwareDev	
 =	
 ["BZZ.DEV1",	

"BZZ.DEV2","BZZ.DEV3"])	

#macro(
 isoChannel	
 $name	
 $virtualParam	
)	

<Isic	
 id="$name">	

	
 <ValueCondition	
 param="$${name}"	
 operator="<"	

refValue="100"/>	

	
 <Exporter	
 beanId="timingExporter">	
 	

	
 	
 <Trigger	
 event="SKIP_IF_MASKED"/>	

	
 </Exporter>	

</Isic>	

#end	

#foreach($device	
 in	
 $hardwareDev)	

	
 #set(
 $virtualParam	
 =	
 $virtualDev	

[$foreach.index])	

	
 #isoChannel(
 $device	
 $virtualParam	
 $device	
)	

#end	

<Permit	
 id="ISO_GPS_PERMIT">	

	
 <LogicalCondition	
 operator="AND">	

	
 	
 #foreach($device	
 in	
 $hardwareDev)	

	
 	
 	
 <Test	
 refid="$device"/>	

	
 	
 #end	

	
 </LogicalCondition>	

	
 <Exporter	
 beanId="timingExporter">	

	
 	
 <Trigger	
 event="ON_EVAL"/>	

	
 </Exporter>	

	
 <UpdateEvent>	

	
 	
 <![CDATA[

	
 	
 	
 return	
 isTriggerId("tgmTelegram")	

	
 	
]]>	

	
 </UpdateEvent>	

</Permit>

Counterpart in DSL
def	
 virtualDev	
 =	
 ["BZZ.VSISDEV1",	

"BZZ.VSISDEV2","BZZ.VSISDEV3"]	

def	
 hardwareDev	
 =	
 ["BZZ.DEV1,	

"BZZ.DEV2","BZZ.DEV3"]	

def	
 isic	
 =	
 {String	
 name,	
 String	
 virtualParam	
 -­‐>	

	
 	
 	
 	
 isic(id:name)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 valueCondition	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 $(name)	
 <	
 100	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 exporter(beanId:"timingExporter")	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trigger(event:"SKIP_IF_MASKED")	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 }	

}	

for(int	
 i=0;	
 i	
 <	
 virtualDev.size();	
 ++i)	
 {	

	
 	
 	
 	
 isic(virtualDev[i],hardwareDev[i])	

}	

permit(id:"ISO_GPS_PERMIT")	
 {	

	
 logicalCondition	
 {	

	
 	
 	
 	
 	
 	
 	
 return	
 channel(virtualDev[0])	
 &	

channel(virtualDev[1])	
 &	
 channel(virtualDev[2])	

	
 	
 	
 	
 }	

	
 	
 	
 	
 exporter(beanId:"timingExporter")	
 {	

	
 	
 	
 	
 	
 	
 	
 trigger(event:"ON_EVAL")	

	
 	
 	
 	
 }	

	
 updateEvent	
 {	

	
 	
 	
 	
 	
 	
 	
 return	
 "tgmTelegram".equals(it.getTriggerId())	

}	

}

The first configuration is written in XML, interwoven

with Velocity directives, which reduce the total number
of lines of code at the expense of its readability. This

approach had to parse the XML document to extract the
user-defined logic. On the other hand, the equivalent DSL
configuration is more compact due to the conciseness of
the Groovy language, and is less error-prone because of
the IDE support. The Groovy shell directly interprets the
user-defined logic.

CONCLUSIONS
Adopting Groovy as a host language came with its

good and bad points. The main disadvantage lies in the
existing but still poor IDE support where the tools have
not reached the maturity state yet. However, we hope for
the situation to improve over time. Another important
point is a possible lack of type safety as Groovy is used in
a scripting, interpreted mode. Despite those minor flaws it
stays a valid technical choice. Its interoperability with
Java on the binary level is a great advantage opening
ways for the implementation of the DSL in a mixed Java
and Groovy mode. Also the previously mentioned built-in
features targeting directly the DSL construction make the
design of such language much easier.

Taking the DSL approach for the SIS configuration
proved itself to be the right choice in practice. The
corresponding files are much smaller and more readable
comparing to their XML counterparts. At the same time
the configuration is more concise with all its entities
represented as Groovy code constructs. Overall it
improves significantly the level of user satisfaction and
maintainability of the system as a whole.

REFERENCES
[1] J. Wozniak, V. Baggiolini, D. Garcia Quintas, J.

Wenninger, “Software Interlocks System”, Icalepcs
09’.

[2] M. Fowler, R. Pearsons, “Domain-Specific
Languages”, Addison-Wesley 10’.

[3] B. Muscho, “Gradle in Action”, Manning
Publications 13’.

[4] M. Mernik, J. Heering, and A. M. Sloane, "When and
how to develop domain-specific languages." ACM
computing surveys (CSUR) 05’.

[5] M. Seifeddine, “Introduction to Groovy and Grails”.
Department of Computer Science, Lund University,
09’.

[6] F. Dearle, “Groovy for Domain-Specific Languages”,
Packt Publishing, 10’.

[7] M. Bannet, R. Borgen, K. Havelund, M. Ingham and
D. Wagner, “Prototyping a Domain-Specific
Language for Monitor and Control Systems”, Journal
of Aerospace, Computing, Information and
Communication, vol. 7, 10’.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC142

Software Technology Evolution

ISBN 978-3-95450-139-7

445 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

