
HIGH-AVAILABILITY MONITORING AND BIG DATA: USING JAVA
CLUSTERING AND CACHING TECHNOLOGIES TO MEET COMPLEX

MONITORING SCENARIOS

M. Bräger, M. Brightwell, E. Koufakis, R. Martini, A. Suwalska, CERN, Geneva, Switzerland

Abstract
Monitoring and control applications face ever more

demanding requirements: as both data sets and data rates
continue to increase, non-functional requirements such as
performance, availability and maintainability become
more important. C2MON (CERN Control and Monitoring
Platform) is a monitoring platform developed at CERN
over the past few years. Making use of modern Java cach-
ing and clustering technologies, the platform supports
multiple deployment architectures, from a simple 3-tier
system to highly complex clustered solutions. In this pa-
per we consider various monitoring scenarios and how the
C2MON deployment strategy can be adapted to meet
them.

INTRODUCTION
The world of Monitoring and Control software is vast,

stretching from the advanced systems installed in today's
modern factories and scientific installations, all the way to
the software monitoring a small IT cluster or your home
IP-enabled fridge. Within this diversity, many of the core
functionalities remain the same, namely that of gathering,
storing and displaying data and processing related alarms
("monitoring"), and taking appropriate actions - either
manually or automatically - based on this information
("control"). The functional differences will often lie in the
drivers for connecting to the specific hardware and the
algorithms behind complicated control processes. That
said, major differences may appear in the non-functional
requirements, and this appears to be often overlooked. Of
course, all users would hope for the software to be relia-
ble! But when you start looking at availability, maintaina-
bility, adaptability or performance, major differences
soon appear, depending on the monitoring service you are
trying to run. For instance, in terms of maintainability, a
software upgrade that puts your fridge temporarily offline
is of little importance whereas the inability to introduce a
critical patch at runtime may be a major downside of a
24/7 monitoring service. Similarly for adaptability, if your
monitoring system doesn’t have a predictably steady data
flow, it must bust be designed to respond to a sudden ava-
lanche of data without significantly degrading perfor-
mance.

With these special requirements in mind, the C2MON
was created in 2009 to design and implement a common
monitoring and control platform [1]. Providing the core
functionalities of a monitoring system, this software aims
to be extendable and adaptable to a wide variety of moni-
toring requirements, both functional and non-functional.
In this paper we focus on the non-functional requirements
mentioned above, and how the C2MON architecture was

designed to meet these. In particular, we illustrate how the
integration of modern Java caching and clustering solu-
tions allowed sufficient modularity in the deployment
strategies, for most of the requirement scenarios to be
met. In this case the overused term of "leveraging" is in
fact appropriate, since the C2MON architecture builds on
3rd party products to provide a much more comprehen-
sive software suite.

The paper is organized as follows: in the first section
we review Java caching and clustering technologies and
how they have evolved over the past few years. The sec-
ond section gives a brief overview of the C2MON design,
referring to other publications. The heart of the paper is in
section 3, where we illustrate C2MON deployment archi-
tectures through a number of different monitoring scenar-
ios.

REALIZING CACHING AND CLUSTER-
ING ON JAVA ENTERPRISE TECHNOL-

OGIES
A major aim of the C2MON project was to provide a

clustered server layer that was able to consume data up-
dates in a load-balanced manner. This setup allows a bet-
ter handling of data avalanches and a higher protection
against network or hardware failures. Another big ad-
vantage of a clustered setup is the possibility of applying
patches or functional upgrades transparently to the system
without creating any service downtime. This can be
achieved through rolling updates, which means that the
servers are stopped and restarted one after the other. It
also allows quick rollbacks in case of unforeseen prob-
lems. When realizing such a distributed setup, a key de-
sign issue is how the cache operates across the different
nodes. The cache is usually placed between the applica-
tion and the database, and a distributed design must con-
sider how distributed updates and reads will affect the
consistency of the data and overall performance of the
system.

Review of Latest Evolution in Java Cache Tech-
nologies

One of the biggest constraints in Java is that the in-
crease of allocated heap memory is tightly coupled to the
time that the garbage collector running in all Java applica-
tions needs to collect unused objects. During its clean-up
phase all other threads are paused by the Java Virtual Ma-
chine (JVM) and this can lead to unpredictable applica-
tion response times. Even though in theory a 64bit Java
virtual machine is open to allocate all available memory,
it is not recommended to use more than four GB of gar-
bage-collected heap. The main issue is not the object de-

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC140

Software Technology Evolution

ISBN 978-3-95450-139-7

439 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

letion itself, but the fact that the garbage collector com-
pacts the heap afterwards. Large blocks of data allocated
as buffers may then be moved around, and this can be
very time-consuming. Tuning the garbage collector is
possible, but non-trivial and is limited. Java however of-
fers a backdoor to more memory use through direct
ByteBuffer, which is nowadays widely used by standard
caching technologies. Already introduced with Java 1.4,
direct buffers allow creating and working with memory
outside the garbage-collected heap [2]. Ehcache [3], one
of the most used open-source caching libraries is leverag-
ing this to offer Java applications the potential of making
use of the entire heap space. Hazelcast [4] is another
caching product making use of this off-heap possibility.

Next to this use of off-heap memory, another major
evolution in Java caching products has been the increase
in distributed cache technologies. These tend to fall into
two categories, either making use of a separate “caching”
server, or connecting applications in a peer-to-peer archi-
tecture. Ehcache for instance, in combination with Terra-
cotta’s shared memory server technology called
BigMemory [5], can be spread across multiple nodes.
Although some of the Ehcache and BigMemory features
require a license, the free edition already offers interesting
functionality for projects that do not intend to share hun-
dreds of gigabytes among their nodes. A remarkable one
is the Ehcache search functionality, allowing SQL-like
searches across the distributed memory, realized through
the separate BigMemory server that serves as central
cache store to which all nodes connect. The server can
have any number of hot standby mirror nodes forming a
so-called stripe. If the memory becomes too large, more
stripes can be added horizontally to maintain the required
performance. This server-centric design tends to suit high-
update scenarios, since a received update will be commu-
nicated only to the server and does not get sent to all other
nodes immediately.

Due to C2MON’s high-update requirement and also be-
cause of the fact that Ehcache is compliant with the up-
coming JSR 107 in-memory caching standard [6], the
framework was chosen as C2MON’s central cache, ensur-
ing that the server remains compatible with other caching
solutions. Finally, when looking at the caching options
available, careful consideration must be put into under-
standing the data consistency and durability settings
available. For Ehcache with Terracotta for instance, the
cache can be set to remain at all times consistent and per-
sisted to disk, which is the configuration usually used for
C2MON.

C2MON ARCHITECTURE OVERVIEW
C2MON started out of a refactoring of the Technical In-

frastructure Monitoring (TIM) server [7]. It was based on
the idea of reusing TIM’s core components for creating a
new modular and open monitoring platform. C2MON uses
standard three-tier architecture with the Java Messaging
(JMS) framework ActiveMQ as middleware between its
tiers [8]. The three layers are the Data Acquisition (DAQ)

layer, the C2MON server layer and the C2MON Client
API.

Data Acquisition Layer
The DAQ layer offers drivers to acquire data from a va-

riety of sources, for instance the standard industry com-
munication protocol OPC (DCOM and UA) as well as
data retrieval from PLC, Oracle database or other CERN
specific protocols. Each DAQ process runs a common
DAQ core, which manages the lifecycle and communica-
tion with the C2MON server tier. It also applies various
filters to the data stream in order to reduce the volume
and improve the quality of the data.

Business Layer
The C2MON server runs as a standalone Spring appli-

cation. No additional dependency to any enterprise server
technology such as J2EE is needed. The heart of the sys-
tem is based on a (optionally distributed) cache that is
shielded by a wrapper interface. The modular design sim-
plifies the writing of regression tests or simulation of cer-
tain parts of the system. The server comprises a core part
that every C2MON instance has to include and a set of
optional modules. The core architecture contains the in-
memory cache and provides a basic set of functionalities,
that is:
 Communication and lifecycle management of all

DAQ processes.
 Configuration of the individual DAQ modules.
 The initial load of the in-memory cache from the

backup database, and recovery options in case of a
crash.

 Evaluation of alarms and business rules, which can
be defined for each data sensor.

Server modules can subscribe to all kinds of core
events for further treatment, such as sensor or alarm up-
dates, or the status change of an equipment or DAQ pro-
cess.

Client Layer
Finally, the C2MON client API is the Java interface for

interacting with C2MON. The API allows subscription to
any kind of monitored data and securely triggers execu-
tion of pre-configured commands. It also checks the con-
nection and health state of the server layer. An appreciat-
ed feature is the possibility to retrieve historical data from
the database as well as to switch all subscribed data into
playback mode and replay it on an application as if it was
occurring in real time. The communication between serv-
er and client layer uses simple JSON messages broadcast
through JMS topics.

C2MON DEPLOYMENT SCENARIOS
Before describing the different C2MON deployment

scenarios, it is important to say a word about data parti-
tioning in general.

MOPPC140 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

440C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

C2MON Distributed Architectures: General
Considerations

Often in distributed architectures, the performance of
the system will depend highly on whether the data can be
partitioned in some logical way, so that different nodes
across the cluster can concentrate on managing a subset of
the overall data set. This strategy is often referred to as
data sharding. Indeed, successful partitioning will then
limit the network traffic, with clients going directly to the
node where the freshest version of the required data is
stored. In fact, if your data can be neatly split, it may be
worth running two entirely separate instances of C2MON,
particularly if the clients can also be split along these
lines. What's more, a future project is to enable the
C2MON client API to acquire data from multiple
C2MON-based services, so that all C2MON-acquired data
can be seamlessly merged in common synoptic displays.
In the end, the main constraint on partitioning the data
will be the use of data in common business rules, which
require the concerned data points to be served by the
same C2MON cluster (for data synchronization reasons).

Similarly, before choosing a given architecture for per-
formance reasons, careful thought must be put into
whether all the data propagated to the C2MON servers is
required at that level. As described in the past chapter,
C2MON provides a sophisticated data acquisition layer,
providing a variety of data filtering mechanisms letting
only essential data changes through to the actual serv-
er/cache.

In particular two hardware aspects are worth emphasiz-
ing for the importance they will have on the final perfor-
mance and behavior of the system, namely memory and
network. Of course, to benefit from the in-memory cache
technologies described previously in this paper, it is im-
portant that the hardware on which the cache components
run, both nodes and central cache server, dispose of suffi-
cient memory to contain the entire cache. Similarly, it is
quite clear that to optimize performance the cache nodes
and servers should ideally be connected via a fast and
reliable network. Finally, it is worth noting here that the
most complicated part in tuning a distributed system will
often be understanding the consequences of various
hardware and network failures on the cluster, both in
terms of service availability and data consistency. There
is no general rule here, and obtaining the ideal configura-
tion will require real-world tests to tune such things as
cluster-monitoring timeouts, and fallback strategies when
the network splits a cluster in two, for instance. Ehcache
provide some good guidance on their website for address-
ing these issues correctly.

Deployment 1: Simple and Fast
The first scenario we describe corresponds to an exist-

ing C2MON deployment at CERN, that of the DIAMON
monitoring service [9]. This service is used to monitor
thousands of computers used to run the CERN accelerator
complex. Both operating system variables and applica-
tion-specific metrics are imported into the C2MON plat-

form, using some custom data acquisition modules. In
terms of non-functional requirements, reliability and high
performance are the most important. The availability is
less critical, and the service can live with short interrup-
tions for software upgrades. To meet this scenario, the
simplest C2MON deployment is sufficient, providing for
easier management of the software components. In this
architecture, a single server is deployed, with no redun-
dancy or rolling updates possible (see Fig. 1 for a depic-
tion of this architecture). On the other hand, the in-
memory single-node cache immediately provides a very
good performance and the setup remains very simple to
configure and manage.

This deployment can be adapted in two important ways.
Firstly, as described in the previous chapter, the cache can
be kept off-heap using the Ehcache BigMemory technol-
ogy. This means that this architecture can still be used for
very large monitoring scenarios without compromising on
the C2MON performance (currently a license is required if
the cache size exceeds 32 GB). Secondly, the single Ac-
tiveMQ broker can also be upgraded to a cluster if the
message load requires this, as is done in the DIAMON
deployment.

Figure 1: Single server setup.

Deployment 2: Available and Maintainable
The architecture presented in Fig. 2 combines high

availability and maintainability with sufficient perfor-
mance for most needs. It corresponds to the deployment
used for TIM that benefits since the migration to C2MON
from easier software upgrades and an increase the overall
availability of the service. As compared to scenario 1, this
deployment has added redundancy on the server level,
allowing rolling updates and instant failover in case of a
single server failure. With the separate Terracotta caching
process, this architecture choice also allows for a larger
number of configured data points out-of-the-box, since
the Terracotta process will automatically overflow to disk
if required. On the other hand, the performance will in
general be slower with a lower throughput, since the
transfer of cache changes from the nodes to Terracotta is
transacted (including the disk cache persistence).

As in scenario 1, this distributed cache can be kept off-
heap if it gets too large and performance needs to be
maintained. This can be done both for the C2MON nodes
and the Terracotta central server. However, this will re-

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC140

Software Technology Evolution

ISBN 978-3-95450-139-7

441 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

quire a BigMemory license, at least according to the li-
censing policy at the time of writing.

Figure 2: High availability architecture.

Deployment 3: All Bells and Whistles
This is the ultimate scenario with the most stringent re-

quirements, with an architecture intended to maximize
performance and availability of the service. Of course, the
downside is that the service becomes both more compli-
cated to deploy and manage, since more hardware and
processes are now involved. Also, the cache setup now
requires a license, the fee currently depending on the
number of C2MON servers running. Before choosing this
option, careful consideration should be given to the points
detailed in the first paragraph of this section, as it may be
possible to achieve sufficient performance using the setup
in scenario 2.

The first step when setting up this architecture is to op-
timally partition the data: large data sets can normally be
broken down in some way, with minimal dependencies
between the partitions. Let us now detail the different
layers in turn.

Figure 3: Data grouping within C2MON cluster.

On the DAQ layer, a single or small group of DAQs is
dedicated to each data partition. Enough DAQ groups
should be added to handle the incoming data load. Each
group of DAQs then connects to a group of ActiveMQ
brokers dedicated to its data fragment (see Fig. 3). These
form part of the wider ActiveMQ cluster that handles
DAQ to server communication. The data is then forward-
ed to a group of C2MON servers, which similarly form
part of the wider C2MON cluster. It is important to under-
stand here that all the C2MON nodes form a single clus-
ter, but that subgroups of this cluster are dedicated to a
single data partition of the shared memory (see Fig. 3).
This means that while they will usually only deal with
incoming data from this partition, they remain capable of

dealing with any data coming from the DAQ layer. Equal-
ly importantly, they can handle any client requests, which
transit through a separate ActiveMQ cluster and can end
up on any C2MON node. The grouping of the broker and
server nodes according to data partitions is simply a strat-
egy to help the distributed cache optimize the data distri-
bution, since C2MON nodes “specialize” in certain data
points. It assumes client requests are not the main perfor-
mance constraint, since they do not necessarily land on a
node responsible for the requested data. Ehcache is con-
figured as a Terracotta server array, providing for hori-
zontal scaling of the Terracotta server to which the
C2MON nodes connect. As in the other scenarios, the
cache can be kept off-heap if it gets too large. Notice the
illustration only displays a couple of horizontal data parti-
tions, but all levels can be horizontally scaled along the
dotted lines.

CONCLUSION
Redundancy and simplicity are key concepts for realiz-

ing high-availability services, but not trivial to achieve.
The biggest challenge is to limit the consequences of dis-
ruptive incidents, such as hardware, network or database
failures. Over the last decade the implementation of high-
ly available, clustered applications in Java has become
much simpler. One of the reasons is the increased offer of
sophisticated third party in-memory distributed caching
products. Another important factor is the use of simpler
frameworks and design patterns with clear interfaces that
avoid tight dependencies to third party libraries

Choosing Ehcache with Terracotta BigMemory as dis-
tributed in-memory framework proved to be the right de-
cision for the C2MON project. It provides sufficient flexi-
bility for realizing all the different C2MON use cases pre-
sented in the previous section, which is emphatically
demonstrated through CERN’s two critical monitoring
projects TIM and DIAMON [10].

REFERENCES
[1] M. Bräger, M. Brightwell, A. Lang, A. Suwalska,

“A customizable platform for high-availability monitoring,
control and data distribution at CERN”, ICALEPCS’11,
2011, p.418ff

[2] Keith Gregory, “Byte Buffers and Non-Heap Memory”,
http://www.kdgregory.com/?page=java.byteBuffer

[3] Ehcache Homepage, http://ehcache.org
[4] Hazlecast Hompage, http://www.hazelcast.com
[5] Terracotta Homepage, http://terracotta.org
[6] JSR 107: JCACHE - Java Temporary Caching API,

 http://jcp.org/en/jsr/detail?id=107
[7] J. Stowisek, A. Suwalska, T. Riesco, “Technical Infrastruc-

ture Montoring at CERN”, EPAC’06, p.233ff
[8] ActiveMQ Homepage, http://activemq.apache.org
[9] W. Buczak, M. Buttner, F. Ehm, P. Jurcso, M. Mitev, “DI-

AMON2 – Improved monitoring of CERN’s accelerator
controls infrastructure”, ICLAEPCS’13, 2013

[10] C2MON Homepage, http://cern.ch/c2mon

MOPPC140 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

442C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

