
MADOCA II INTERFACE FOR LabVIEW

Y. Furukawa, T. Fujita, M. Ishii, T. Matsumoto
SPring-8/JASRI, Kouto, Sayo-cho Hyogo, 679-5198, Japan.

Abstract
LabVIEW is widely used for experimental station

control in SPring-8. LabVIEW is also partially used for
accelerator control, while most software for the SPring-8
accelerator and beamline control are built on Message
And Database Oriented Control Architecture (MADOCA)
control framework. As synchrotron radiation experiments
advance, there is a requirement for complex data
exchange between the MADOCA and LabVIEW control
systems which has not been realized. We have developed
a next-generation MADOCA called MADOCA II, as
reported in this ICALEPCS (T.Matsumoto et. al.). We
ported the MADOCA II framework to Windows and we
developed a MADOCA II interface for LabVIEW. Using
the interface, variable length data can be exchanged
between MADOCA and LabVIEW-based applications.
As a first application, we developed a readout system for
an electron beam position monitor with NI's PCI-5922
digitizers. A client application sends a message to a
remote LabVIEW based digitizer readout application via
the MADOCA II middle-ware and the readout system
sends back waveform data to the client. We plan to apply
the interface to various accelerator and synchrotron
radiation experiment controls.

INTRODUCTION
The Message And Database Oriented Control

Architecture (MADOCA) [1] was developed for the
SPring-8 storage ring and beamline control system and it
has extended its coverage area to the injector and booster
synchrotron [2] of the SPring-8, SACLA[3] accelerator,
etc. MADOCA has also been applied to the experimental
station controls in SACLA[4].

MADOCA was designed as a client/server model to be
applied to a distributed control system such as a large-
scale accelerator. MADOCA client programs issue simple
text-based messages to remote I/O controlling computers
and receive result messages.

With advances in accelerator technology and
experiments, there are many demands which cannot be
handled by the MADOCA control system such as
variable-length data transfer and Windows-based control
systems.

MADOCA II, as reported at this conference [5], has
been developed to solve the above problems. MADOCA
II has many advantages such as 1) MADOCA II can
handle variable-length data such as images and
waveforms, and 2) MADOCA II can run in the Windows
environment.

LabVIEW is a powerful tool for developing control and
data acquisition programs in Windows. To integrate a
LabVIEW-based program into a MADOCA–II-based

control system, a MADOCA II–LabVIEW interface was
developed.

As the first application of the MADOCA II–LabVIEW
interface, we built a waveform readout system based on
the NI's PCI-5922 digitizer for the SPring-8 beam
position monitors(BPMs).

MADOCA II – LABVIEW INTERFACE

 The MADOCA II protocol uses ZeroMQ [6] and
MessagePack [7]. The MADOCA II client program packs
a text-based message formatted as “S/V/O/C” and related
information into a packed binary using the MessagePack
library. Then the program issues it to the “message
server” (MS) which is a messaging middle-ware of the
MADOCA II framework, using the ZeroMQ library.

The parts of the message format are as follows: “S”
denotes the program, and the framework automatically
defines it. “V” denotes the action of command; mainly
“put” or “get” is used, and supplementary “ask” and
“show” are also used. “O” is an “object name” which
identifies the target of the message, and “C” is an action
parameter.

Server programs which control devices register an
object list to the MS running on the same computer. The
MSs exchange their contained object lists. The MS
decides the destination of a message using the “O”
(object) part of the message. and issues the message to
one of the server program or another MS running on a
remote computer.

The MADOCA II–LabVIEW interface is written using
LabVIEW-zmq binding [8] and MessagePack for
LabVIEW [9] as shown in Fig. 1. The MADOCA II–
LabVIEW interface communicates with MS via
LabVIEW-zmq binding. MADOCA II–LabVIEW
receives a message from the MS and unpacks it using
MessagePack for LabVIEW.

An application block in Fig. 1 receives an unpacked
message from the MADOCA II–LabVIEW interface,
interprets it, executes it and sends back the execution
result to the interface. Then the interface packs results
using MessagePack for LabVIEW and sends the result
message to the MS using LabVIEW-zmq binding.

In the initialization phase, the MADOCA II–LabVIEW
interface sends an object list, which is described in a
configuration file, to the MS, so the MS can transfer
messages from clients to the interface.

MOPPC129 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

410C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Note that the entire MADOCA II–LabVIEW interface
was written in LabVIEW, no other language or helper
library was required except for LabVIEW-zmq binding
and MessagePack for LabVIEW.

BEAM POSITION MONITOR AND
WAVEFORM READOUT

An outline of the system is shown in Fig. 2. There are 2
BPMs installed at cell 15 and cell 27 in SPring-8.
Analogue blocks amplify signals from electrodes and
convert them to horizontal and vertical position signals.
The position signals are converted to digital data by a
PXI-5922 ADC with a 50k/s sampling rate and 24bit
resolution.

As shown in Fig. 2, the BPM readout software consists
of two blocks. The first block is to readout BPM data
continuously and the other block is to send back BPM
data (waveform) as a request from a remote client
program using the MADOCA II–LabVIEW interface.

The BPM data is read out continuously by the readout
block just after execution of the BPM read out program.
After receiving a “start” message from a client program
via the MADOCA II middle-ware, the readout block

sends decimated data at 5ks/s, 500s/s and 50 s/s to
MADOCA II–LabVIEW interface block using
LabVIEW’s data queue.

The MADOCA II–LabVIEW interface sends a reply
message with a packed floating expression data array with
a size of 5003, 503 or 53 for every one-second waveform.
The additional 3 data contain start time, end time and time
resolution.

The client program running on the LINUX (SUSE
Linux Enterprise 11.0) accesses waveform data once
every second and displays waveforms on the graphical
user interface panel as shown in Fig 3. The client program
also displays the frequency–domain spectrum by a fast
Fourier transform and stores the waveforms in the
relational data base (RDB) system every 15min. Storage
rate is limited of the performance of the RDB system and
will be switched to the NoSQL data base system reported
at this conference [10].

The transfer time for 5000 data points from the BPM
read out–program to the client for two BPMs was about
550ms. This is fast enough to obtain 2 BPM data every
second. After opretating for several weeks, it is confirmed
that the system works well for long–term operation.

The system will be used for beam orbit monitoring
beam position displacements up to 100Hz and to
investigate the source of drift of the beam position.

Figure 1: The MADOCA II–LabVIEW Interface. A
message from a client via the message server (MS) is
received by LabVIEW-zmq and unpacked by
MessagePack for LabVIEW. After execution in the
application block, the result message and data are packed
by the MessagePack for LabVIEW and sent back to the
client by LabVIEW-zmq.

Figure 2 : Structure of the BPM readout system. The
BPM signals are fed to the analogue block and converted
to position signals. The position signals are read out by
PXI 5922 ADC and transferred to the client program
using MADOCA II–LabVIEW interface.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC129

Software Technology Evolution

ISBN 978-3-95450-139-7

411 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

SUMMARY
 We developed a MADOCA II–LabVIEW interface to

integrate LabVIEW–based software into the MADOCA II
control system. As the first application we also developed
a PXI based BPM readout system. We introduced it into
the SPring-8 control system and it had good enough
performance to obtain BPM data. We plan to use the
interface for other many applications such as a
LabVIEW–based detector control system, a piezo-

transducer control system for the fine position tuning of
X-ray monochromators, etc.

ACKNOWLEDGMENT
We would like to thank Mr. Yamagata of National

Instruments Japan for developing the MADOCA II–
LabVIEW interface. We also would like to thank Dr R.
Tanaka, A. Yamashita and M. Kago at SPring-8 for useful
discussions and suggestions.

REFERENCES
[1] R. Tanaka, et.,al., “The first operation of control system at

the SPring-8 storage ring”, Proc. of ICALEPCS'97,
Beijing, China, (1997) p.1

[2] N. Hosoda, et., al., “Integration of the Booster Synchrotron
Control System to the SPring-8 Control System”, Proc. of
ICALEPCS'99, Trieste, Italy, (1999) p.93

[3] R. Tanaka, et., al., “Inauguration of the XFEL Facility,
SACLA, in SPring-8”, Proc. of ICALEPCS 2011,
Grenoble, France, (2011) p.585

[4] M. Yamaga, et., al., “Event-Synchronized Data-
Acquisition System for SPring-8 XFEL”, Proc of
ICALEPCS 2009, Kobe, Japan, (2009) p.69

[5] T. Matsumoto et al., “Next-generation MADOCA for
SPring-8 control framework”, TUCOCB01, these
proceedings.

[6] http://www.zeromq.org
[7] http://msgpack.org
[8] http://www.zeromq.org/bindings:labview
[9] http://sourceforge.net/p/msgpack-labview/wiki/Home

[10] M. Kago et al., “Development of a Scalable and Flexible
Data Logging System Using NoSQL Databases”,
TUPPC012, these proceedings.

Figure 3: Example of a client program. Upper and
middle panes display waveforms for horizontal and
vertical position. The bottom pane shows an FFT–
analysed spectrum. This Figure shows beam position
during storage ring tuning, so the horizontal position was
changed.

MOPPC129 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

412C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

