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Abstract 
Real-time control is essential for a low level RF and 

timing system to have beam stability in an accelerator 
operation, however, it is difficult to optimize priority 
control of multiple processes with real-time (RT) and 
time-sharing (TS) classes on a single-core processor. For 
example, it is not possible to log into the operating system 
if a real-time class process occupies the resource of 
a single-core processor. Recently, multi-core processors 
have been utilized for equipment control. We studied the 
process control for multiple processes running on multi-
core processors. After several investigations, we 
confirmed that a stable operating system could run under 
a heavy load on multi-core processors. It is possible to 
achieve a real-time control response of the order of 
milliseconds in a fast control system such as an event 
synchronized data acquisition system. Additionally, we 
measured the response performance between client and 
server processes using the MADOCA II framework, the 
next-generation MADOCA. In this paper, we present 
details of the tunings required for real-time process 
control on multi-core processors and measurement results 
of MADOCA II. 

INTRODUCTION 
The control systems for SPring-8 and SACLA adopt 

the MADOCA framework [1]. These equipment controls 
introduce the VMEbus system based on the IA 
architecture Solaris 10. VME single-core CPU boards, 
such as the SANRITZ SVA041, are in use. In the 
MADOCA framework, a basic software scheme on a 
VME CPU board consists of an equipment control 
process, some processes to write polling data in memory, 
and a server process to send data from the memory to a 
database. Additionally, several fast feedback processes 
run in fast and complex control systems such as the LLRF 
system, undulator control system, and event synchronized 
data acquisition system. Recent control systems have a 
tendency to increase the number of processes running on 
a host. 

Conventionally, programs are developed with wait-to-
release CPU resources by using sleep() or the timeout 
function of select(). The Solaris system clock frequency 
can be set up to 1000 Hz with high resolution. To satisfy a 
control interval of less than 1 millisecond, it is an easy 
solution to install a busy-wait process. However a busy-
wait should not be used if it is necessary to avoid 100% 
CPU occupation on a single-core processor. If a real-time 
process enters an infinite loop on a single-core processor, 
it becomes impossible to log into the operating system. It 

is difficult to optimize priority control of multiple 
processes with real-time and time-sharing classes on a 
single-core processor.  

Recently, a VME multi-core CPU board has come into 
use for equipment control. We studied the process control 
of multiple processes running on multi-core processors. 

OPERATION VERIFICATION OF MULTI-
CORE PROCESSORS 

We studied two models of VME multi-core CPU board: 
a XVB601 (GE Intelligent Platforms), featuring the Intel 
Core i7-620UE 1.06 GHz, and a VP717 (Concurrent 
Technologies), featuring the Intel Core i7-620LE 2.0 
GHz. Both have dual-core processors with low power 
consumption, and support Intel Hyper-Threading 
Technology. These VME CPU boards allow four 
processors to appear to the host operating system, and the 
maximum value of CPU utilization per processor is 25%. 
We investigated CPU sharing and process states under 
high workloads on Solaris 10. The high workload test 
program was a simple infinite loop: while (1). If this 
process runs on a single-core processor, the operating 
system hangs. We used this test program for the operation 
verification of multi-core processors. 

Scheduling Class 
By default, Solaris uses a time-sharing (TS) scheduling 

class, however, it also offers a real-time (RT) scheduling 
class. The RT scheduling class uses system priorities in a 
different range from the Fair Sharing Scheduler (FSS). 
Therefore, the FSS can coexist with the RT scheduling 
class within the same processor. TS class processes are 
controlled by the FSS. We studied the following cases. 
• When a TS test program runs on four processors, the 

process is running on any processor. The process is 
not allocated a specific one. The CPU utilization of a 
process reaches 25%.  

• When four TS test programs run on four processors, 
these processes are running on any processor among 
the four. A process is not allocated to a specific one. 
One among the four processes is placed in the run 
queue. When five TS test programs run on four 
processors, two of the five processes are placed in 
the run queue. The CPU utilization of a process is 
20%. In this situation, it is possible to log into the 
operating system.  

• When three RT test programs run on four processors, 
these processes are running on any processor among 
the four. A process is not allocated to a specific one. 
The CPU utilization of a process reaches 25%. In 
this situation, it is possible to log into the operating 
system. When four RT test programs run, the 
operating system hangs. 
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 Processor Binding  
Solaris can bind a process to a specific processor. We 

also studied the following cases. 
• When five TS test programs and a TS test program 
bound to a processor run on four processors, the 
CPU utilization of the bound process is ~14% and 
the CPU utilization of the others is ~18%. Five 
processes share four processors. 

• When five TS test programs run on four processors 
and a TS test program and an RT test program bound 
to same processor run, the CPU utilization of a 
bound RT process reaches 25% and the CPU 
utilization of a bound TS process is 0%. The other 
TS processes share the other three processors. 

The non-binding TS processes can share all processors, 
but a bound TS process is allocated to only a specific 
processor. Therefore, under the control of FSS, a bound 
process is allocated a smaller CPU resource than the other 
processes. If high performance is required, the binding of 
multiple processes should be done carefully. 

Processor Set 
Solaris can group multiple processors as a set. We 

formed a processor set by grouping three processors and 
studied the following cases. 
• When three TS test programs bound to a processor 

set run on four processors, the CPU utilization of a 
process reaches 25% and the total CPU utilization 
reaches 75%. When four TS test programs bound to a 
processor set run on four processors, the CPU 
utilization of a process reaches 25% and the total 
CPU utilization reaches 75%. One among the four 
processes is placed in the run queue. 

• When a TS test program with three threads bound to 
a processor set runs on four processors, the CPU 
utilization of a process reaches 75%. When a TS test 
program with four threads bound to a processor set 
runs on four processors, the CPU utilization of the 
process reaches 75%. One of the four threads is 
placed in the run queue. 

Features of Multi-core Processors 
Our studies revealed the following features of multi-

core processors. 
• Even if processes numbering more than the 

processors are running on multi-core processors, the 
operating system continues to run stably. 

• It is effective to bind an RT process to a processor. 
However, it is not effective to bind a TS process to a 
processor. 

• A process or thread can occupy only one processor. 
• The priority control of processes is extremely easy to 

achieve by setting a high priority process to the RT 
class and binding the process to a processor. 

On a single-core processor, if an RT process goes out of 
control, the method to recovery the system is to shut the 
power off. However, on multi-core processors, it is 
possible to log into the operating system and kill the 

problem process and thus, the recovery of the system is 
faster.  

INSTALLATION OF MULTI-CORE 
PROCESSORS 

At the beam commissioning stage of SACLA, the 
accelerator repetition rate was 1-10 Hz, and the single-
core CPU boards were installed in all VMEbus systems 
[2]. Currently, the accelerator repetition rate is 20 Hz, 
however, it will go up to 60 Hz. In the LLRF control 
system, two fast feedback control processes and three 
basic MADOCA processes are running on a single-core 
processor. One more process will be added into this 
system. It is difficult to run these processes stably on a 
single-core CPU board. Therefore, the VME CPU boards 
are currently being replaced with multi-core CPU boards. 

Beam steering magnets require fast device control. We 
set the tick to 0.1 ms in Solaris running on the VME 
single-core CPU board and controlled the devices using 
sleep-wait. However, at the tick of 0.1 ms, Solaris became 
unstable. Therefore, we installed busy-wait processes 
running on VME multi-core CPU boards and set the tick 
to 1 ms. The system is now stable [3]. We concluded that 
a VME multi-core CPU board is suitable for fast device 
control. 

PERFORMANCE MEASUREMENT OF 
MADOCA II 

 Next-generation MADOCA (MADOCA II) was 
developed in 2012 [4]. MADOCA II is based on message-
oriented control, just as MADOCA was. However, 
MACDOCA II adopts the ZeroMQ socket [5] as the 
protocol for internal process communication and remote 
communication. MADOCA II also increases the number 
of processes that may be run on a device control 
computer, (generally a VME CPU board). In MADOCA, 
a single Equipment Manager (EM) ran on a host. In 
contract, multiple EMs for each device can be run on a 
host in MADOCA II. 

We measured the performance of the round trip time 
(RTT) of message transmission in Solaris 10 on a VME 
CPU board, VP717. Figure 1 shows the software scheme 
for performance measurement. The Message Server 

 

Figure 1: Software scheme for performance 
measurement on a VME CPU board. 
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(MS2) and EM are necessary components of MADOCA 
II. In MADOCA II, all messages go through MS2; 
therefore, the priority control of MS2 is important. A test 
program (TP) requests the “current time” to the EM via 
MS2 and the EM replies to the TP via MS2. The RTT is 
the time that the TP sends message request and receives 
the message reply. This software scheme for measurement 
is the simplest that can be run on MADOCA II. We also 
measured the performance in various other cases by 
changing a scheduling class and a processor bind of the 
MS2, EM, and TP. We set the tick to 1 ms in Solaris. Case 
1 is the RTT when the MS2, EM, and TP are set to the RT 
class and the MS2 is bound to a processor. Case 2 is the 
RTT when the MS2, EM, and TP are set to the default TS 
class. Table 1 shows the statistics of the RTT in each case. 
Figure 2 shows the measured results for case 1 and Figure 
3 shows the measured results for case 2. In case 1, the 
standard deviation of the RTT is extremely small, and the 
RTT is between 1 and 2 ms. This is good performance for 
real time control requiring precise time accuracy. Case 2 
is not suitable for real time control. However, over 99.8% 
of the RTT are ~1 ms. It is acceptable for a control system 
such as the motor control of beamline components and 
data logging with the order of seconds. 

Table 1: Statistics of RTT 

 

MS2 (RT) with 
binding 
EM (RT) 
TP (RT) 

MS2 (TS) 
EM (TS) 
TP (TS) 

Minimum 1.131 ms 1.029 ms 

Maximum 1.76 ms 141.985 ms 

Average 1.293 ms 1.141 ms 

Median 1.286 ms 1.126 ms 

Standard 
deviation 

0.047 0.67 

 

SUMMARY 
Multi-core processors are now being utilized for 

equipment control. We investigated the process control of 
multiple processes running on multi-core processors. 
Even if an RT process goes out of control on multi-core 
processors, the operating system continues to run stably. 
A process or thread can occupy only one processor. 
Additionally we measured the performance of RTT of 
message transmission in the MADOCA II framework 
running on multi-core processors. We determined that 
RTT is between 1 and 2 ms by the adjustment of process 
control. This is suitable for real time control. Multi-core 
processors are an essential resource for constructing real 
time control systems. 

ACKNOWLEDGMENT 
We would like to thank Dr. R. Tanaka, Dr. A. 

Yamashita, Mr. M. Kago, and other colleagues in the 
JASRI Controls and Computing Division for useful 
discussions regarding MADOCA-II. 

REFERENCES 
[1] R. Tanaka et al., “The first operation of control 

system at the SPring-8 storage ring”, Proc. of 
ICALEPCS’97, Beijing, China, 1997, p 1. 

[2] R. Tanaka et al., “Inauguration of the XFEL facility. 
SACLA, in SPring-8”, Proc. of ICALEPCS2011, 
Grenoble, France, 2011, p585. 

[3] T. Otake et al., “Magnet power supply control 
program developed for SACLA/SPring-8”, Proc. of 
the 8th Annual Meeting of the Particle Accelerator 
Society of Japan, Tsukuba, Japan, 2011, p 539. 

[4] T. Matsumoto et al, “Next-Generation MADOCA 
for The SPring-8 Control Framework”, Proc. of 
ICALEPCS2013, San Francisco, USA, 2013, in 
these proceedings. 

[5] http://www.zeromq.org
 

 

Figure 3: RTT when the MS2, EM, and TP are set 
to the TS class.  

 

Figure 2: RTT When the MS2, EM, and TP are set to 
the RT class and the MS2 is bound to a processor. 
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