
COMMISSIONING THE MEDAUSTRON ACCELERATOR WITH
PROSHELL

R. Moser 1, A. Brett1, U. Dorda1, M. Eichinger1, J. Gutleber2, M. Hager1, M. Janulis1,
 J. Junuzovic1, M. Junuzovic1, M. Marchhart1, H. Pavetits1, C. Torcato de Matos1

1EBG MedAustron, Wr.Neustadt, Austria
2CERN, Geneva, Switzerland

Abstract
MedAustron is a synchrotron-based centre for light ion

therapy under construction in Austria. The accelerator and
its control system entered the on-site commissioning
phase in January 2013. This contribution presents the
current status of the accelerator operation and
commissioning procedure framework called ProShell. It is
used to model measurement procedures for
commissioning and operation with Petri-Nets. Beam
diagnostics device adapters are implemented in C#. To
illustrate its use for beam commissioning, procedures
currently in use are presented including their integration
with existing devices such as ion source, power
converters, slits, wire scanners and profile grid monitors.
The beam spectrum procedure measures distribution of
particle species generated by the ion source. The phase
space distribution procedure performs an emittance
measurement in beam transfer lines. The trajectory
steering procedure measures the beam position in each
part of the machine and aids in correcting the beam
positions by integrating MAD-X optics calculations.
Additional procedures and (beam diagnostic) devices are
defined, implemented and integrated with ProShell on
demand as commissioning progresses.

INTRODUCTION
MedAustron [1] [2] is an ion therapy and research

centre presently under construction in Wiener Neustadt,
Austria. The facility features a synchrotron-based
accelerator (Figure 1) with up to 5 ion sources for
protons, carbon ions and possibly other light ions. It will
provide ion beams with energies up to 800MeV to 5 beam
lines, one of which is a rotating proton gantry.

The Procedure Shell Execution Framework (ProShell)
is a C# application to automate high-level control and
analysis tasks for commissioning and operation [3]. Each
task called a procedure implements a standardized
procedure interface and is deployed as .NET assembly
(shared objects). Key features of the ProShell are:
• Allocating resources on behalf of a procedure.
• Uniform access to system, software and physical

devices independent of communication protocols
for monitoring and control purposes.

• Reception and visualization of device
measurements.

• Management of generic procedure lifecycle and
custom procedure workflow.

• Parallel execution of multiple procedures.
• Automatic procedure execution without user

intervention.
• Manual procedure execution to step through the

procedure specific workflow.
• Provide access to control system services hiding

implementation specific interfaces and
communication protocols.

ARCHITECTURE
Overview

ProShell is a framework to dynamically load and
execute procedures implemented as C# classes. As
outlined in Figure 2 it provides access to system, software
and physical devices for monitoring and control purposes.
These services are accessible from ProShell through
service-specific Driver objects that are used internally and
are not directly accessible from the loaded procedures:

Figure 1: MedAustron accelerator layout.

MOPPC092 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

314C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Status Reports

• Virtual Accelerator Allocator (VAA) is the
scheduler of the system that allocates resources for
exclusive usage on behalf of a user application.

• WinCC OA is a Supervisory Control and Data
Acquisition (SCADA) tool from Siemens [4]. It
acts as the main communication backbone between
user interfaces and procedures on tier 1 and
frontend controllers and devices on tier 3 [5].

• MAPS services are a set of data servers
implementing a publisher subscriber protocol. It
forwards measurements and main timing
information from front-end controllers to user
applications in non-real-time.

• Main Timing System (MTS) generates events for
beam generation that are delivered to the frontend
controllers with a precision of 100ns [6].

Resources
All device instances and types are represented in

WinCC OA as data points (DP) and data point types
(DPT). In addition each DPT contains a set of data point
elements (DPE) that are name-value pairs with a defined
value type. Each device implements one of the following
interfaces:
• BasicDevice is a state-less front-end device

interface that only provides a minimal set of DPEs
for monitoring.

• StateDrivenDevice (SDD) is a state-driven front-
end device interface that extends the BasicDevice
with additional DPEs to provide an interface for
commanding and login to guarantee exclusive
access to a device.

Two special resource types are defined in WinCC OA
to control a set of devices concurrently through a single
virtual device:
• Working Set (WS) is a virtual device that

implements the SDD interface and controls a set of
SDDs.

• Virtual Accelerator (VAcc) controls a set of
Working Sets and subsequently a set of devices. It
also implements the SDD interface. In addition a
VAcc also contains a dynamically assigned Main
Timing Generator that allows a procedure to emit
timing information for beam generation with an
accuracy of 100ns.

ProShell encapsulates communication over a number of
different communication technologies, shielding

procedures from the underlying addressing and
communication specifics by providing devices as object
that follow the adapter pattern [7]. Adapter objects
provide an object-oriented API that implement
BasicDevice or StateDrivenDevice interfaces as shown in
Figure 3.

Procedure
A Procedure encapsulates specific repetitive control

and processing tasks for operation and commissioning
written in C#. All procedures implement a unified
interface and the life cycle defined in Figure 4. Each
procedure is running a separate ProcedureContext that
acts as a container and provides coordinated access to
devices and control system services and manages the
procedure lifecycle. Thus it provides the capability to
execute procedures in parallel. In case of resource
conflicts the VAA will delay the allocation of one
procedure and subsequently ProShell will delay the
execution of this procedure.

Hold

Ready

Op

Failed

Open

Initialize

Enable Disable

Finalize

Clear

Close

Step, Run, Pause

Fault

Figure 4: Procedure context lifecycle.

While the procedure is in Hold state no resources are
allocated. When the user issues an Initialize transition the
procedure allocates the specified resources from the
VAA. The procedure lifecycle state moves to Ready when
all resources have been allocated. Thereafter the user may
emit an Enable transition that parameterizes the procedure
specific Petri net and moves the state machine into Op
state. While in Op state the procedure specific workflow
defined in a Petri Net Modelling Language (PNML) file
[8] can be executed in steps or run until termination.

Pr
oS

he
ll

Procedure

SCADA

MAPS Front End
Controller

Virtual
Accelerator

Allocator

Main Timing
System

Figure 2: General ProShell architecture and main
communication partners.

State Driven
Device

Basic
Device

Power Converter
Controller

Element

Faraday Cup

Working SetVirtual
Accelerator

0..*

1..*

0..*

1..*

1

1

1 1

0..* 0..*

0..*

0..*

Figure 3: Class diagram of resources adapters for
devices, Working Sets and Virtual Accelerators.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC092

Project Status Reports

ISBN 978-3-95450-139-7

315 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

PHASE SPACE DISTRIBUTION
MEASUREMENT

The phase space distribution measurement procedure
measures the horizontal or vertical beam distribution in
the low energy beam transfer line (LEBT) or the medium
energy beam transfer line (MEBT). The basic principle of
this procedure is to position two horizontal or vertical slit
plates to form a gap through which only the selected part
of the beam can pass. Further downstream, a wire scanner
beam diagnostic device performs a beam profile
measurement as depicted in Figure 8.

Figure 8: Measuring a beam profile for a single slit
position.

These beam profiles measurements depicted in Figure 5
are repeated for gap-positions all across the beam pipe
aperture based on the workflow defined in Figure 9.

Figure 9: Petri net implemented by the phase space
distribution measurement procedure.

The results for all slit-gap position specific
measurements are combined to a single heat-map with slit
position on x-axis, monitor position on y-axis and beam
intensity as heat as shown in Figure 6. Based on slit and
monitor positions the plot is transformed to a heat-map
with slit position on the x-axis, beam angle on y-axis and
beam intensity as heat as reproduced in Figure 7. Finally
an emittance calculation is performed on the transformed
measurement data.

The measurement can also be performed with a profile
grid monitor (as used in the MedAustron MEBT) instead
of the wire scanner but with a lower resolution due to the
number of physical wires.

TRAJECTORY STEERING
The trajectory steering procedure is a commissioning

procedure to compute correction values for steering
magnet power converter set-points in transfer lines.

After a beam line is selected, steering magnets and
beam diagnostics devices (wire scanners and profile grid
monitors) are visualized based on their optical position (s-
position) within the beam line as shown in Figure 10.

Figure 10: Trajectory steering procedure user interface.

The operator may manually adapt the steering angle Θ
in mrad based on initial values stored in the element
configuration database [9]. The power converter current
to be applied is calculated in two steps. First, the angle Θ
is transformed to the integrated magnetic field Bl that has
to be generated in the steering magnet using Bl = Θ * Bρ
where Bρ is a beam characteristics value constant for each

 	

Figure 5: Single beam intensity
measurement performed by a wire
scanner.

Figure 6: Combined phase space
distribution measurement plotted over
slit gap and wire position.	

Figure 7: Result of the phase space
distribution measurement procedure.

MOPPC092 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

316C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Status Reports

transfer line. In a second step the magnetic field Bl is
converted to the power converter current through by
applying a previously measured magnet specific B(I)
transformation curve. Alternatively the operator may
apply a current directly.

When the operator starts to execute the steering
procedure, currents for all steering power converters are
applied and destructive measurements are performed with
wire scanners and profile grid monitors in the order of
their optical position from the ion source (see Figure 11).

Figure 11: Petri net implemented by the trajectory
steering procedure.

Subsequently the operator may decide to export a
revised machine model with corrector settings for specific
beam properties. These files can be imported into the
element configuration database and be used in subsequent
commissioning activities as default values as shown in
Figure 12.

Trajectory Steering Procedure
(calls Mad-X for trajectory optimization)

Configuration Web Server

Original
Machine
Model

Revised
Machine
Model

RMS
Importer

RMS
Database

RMS
Exporter

PCC
Cycle-dependent

setpoint files

WinCC OA
Memory DB

PCO Imax
Mag Bmax

ProShell PCCs PCOs
Figure 12: Basic data flow for trajectory steering.

Additionally the measured beam positions can be
exported to MAD-X in order to compute the optimal
corrector settings [10].

SUMMARY
This article gave an overview of the architecture for the

MedAustron Procedure Shell Execution Framework. The
framework follows a container-based approach where
each procedure is executed in its own sandbox.
Accelerator devices are monitored and controlled through
resource adapter objects that provide an object-oriented
interface hides protocol specific details.

Integration with the main systems (WinCC OA, MTS,
VAA and MAPS) has been concluded and been tested in
the production system. Resource adapters for power
converter controllers and several beam diagnostics
devices such as wire scanners, slits and profile grid

monitors have been implemented. Subsequently the
design for two procedures namely the phase space
distribution measurement and the trajectory steering
procedures have been elaborated.

Implementation and testing of the phase space
distribution measurement procedure has concluded and
tests have been successfully carried out in the production
system in April 2013 using the operational wire scanner
and slit devices. Since then the procedure is used for
beam commissioning in the low energy beam transfer
line.

Implementation of the trajectory steering procedure has
concluded for LEBT and MEBT. Tests have been
performed with operational power converters and wire
scanners. Final tests with profile grid monitors are
planned for October 2013.

These two procedures are used for beam
commissioning since May 2013 and show that the chosen
approach fits the needs of the commissioning team.
Future work consists primarily of two activities: First,
integrating more devices into the accelerator control
system and implementing resource adapters. Secondly,
gathering requirements, elaborating designs and
implementing additional procedures required for
commissioning and operation.

REFERENCES
[1] M. Benedikt, A. Wrulich, “MedAustron—Project

overview and status”, Eur. Phys. J. Plus (2011) 126:
69.

[2] M. Benedikt, A. Fabich, “MedAustron—Austrian
hadron therapy centre”, Nuclear Science Symposium
Conference Record 2008. NSS '08. IEEE, pp.5597-
5599, 19-25 Oct. 2008.

[3] R. Moser et al., “ProShell – The MedAustron
Accelerator Control Procedure Framework”, in Proc.
ICALEPCS 2011.

[4] P. Golonka, M. Gonzales-Berges, “Integrated Access
Control for PVSS-Based SCADA Systems at
CERN”, in Proc. ICALEPCS 2009.

[5] J. Gutleber et al., “The MedAustron Accelerator
Control System”, Proc. ICALEPCS, 2011.

[6] J. Dedic et al., “Timing System for MedAustron
Based on Off-The-Shelf MRF Transport Layer”, in
Proc. IPAC 2011.

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
“Design Patterns—Elements of Reusable Object-
Oriented Software”, Addison-Wesley, 1995.

[8] J. Billington et al., “The Petri Net Markup Language:
Concepts, Technology, and Tools”, Proc. 24th Int.
Conf. Application and Theory of Petri Nets
(ICATPN’2003), Eindhoven, The Netherlands, June
2003.

[9] R. Moser et al., “The MedAustron Control System
Configuration Management Database”, poster
presented at ICALEPCS 2011.

[10] L. Deniau, “MAD-X progress and future plans”,
CERN-ATS-Note-2012-078 MD, 13 Sep 2012.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC092

Project Status Reports

ISBN 978-3-95450-139-7

317 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

