
IMPROVING CODE QUALITY OF THE COMPACT MUON SOLENOID 

ELECTROMAGNETIC CALORIMETER CONTROL SOFTWARE TO 

INCREASE SYSTEM MAINTAINABILITY* 

O. Holme, D. Di Calafiori, G. Dissertori, L. Djambazov, W. Lustermann, ETH Zurich, Switzerland 

S. Zelepoukine, ETH Zurich, Switzerland and University of Wisconsin-Madison, U.S.A.

Abstract 
The Detector Control System (DCS) software of the 

Electromagnetic Calorimeter (ECAL) of the Compact 

Muon Solenoid (CMS) experiment at CERN is designed 

primarily to enable safe and efficient operation of the 

detector during Large Hadron Collider (LHC) data-taking 

periods. Through a manual analysis of the code and the 

adoption of ConQAT [1], a software quality assessment 

toolkit, the CMS ECAL DCS team has made significant 

progress in reducing complexity and improving code 

quality, with observable results in terms of a reduction in 

the effort dedicated to software maintenance. This paper 

explains the methodology followed, including the 

motivation to adopt ConQAT, the specific details of how 

this toolkit was used and the outcomes that have been 

achieved. 

INTRODUCTION 

The CMS ECAL DCS monitors all the relevant 

detector environment conditions and handles the control 

and monitoring of the powering systems that feed the 

readout electronics and provide bias voltage to the 

sensing elements of the detector [2]. In addition, the 

control and monitoring of several external applications 

are integrated, such as the CMS ECAL safety and cooling 

systems which rely on Programmable Logic Controllers 

(PLCs). The DCS software layer is implemented with the 

flexible and extensible SIMATIC WinCC Open 

Architecture (WinCC OA) supervisory control software 

[3] from ETM professional control and makes use of the 

JCOP Framework (JCOP FW) [4] that is developed by 

CERN in collaboration with the LHC experiments. 

The software was developed over a period of several 

years with coding contributions from nine people during 

the development phase. In order to distribute the work 

amongst the developers, the software was fragmented into 

a series of sub-applications according to the type of data 

to be handled and the region of the detector for which it 

was designed. Examples of sub-applications include bias 

voltage control, low voltage control, temperature and 

humidity monitoring, cooling monitoring and safety 

system interfacing. Twelve independent components were 

produced and combined to form the complete DCS. 

The common technology basis of WinCC OA and the 

JCOP FW, combined with a small number of 

development guidelines, ensured that the complexity of 

integrating the individual components was kept to a 

minimum. This enabled the system to be delivered on 

time for the start of the LHC physics program in 2009. 

 

MAINTENANCE PHASE 

Following the start of detector operations, the CMS 

ECAL DCS project moved into the maintenance phase. In 

order to support the system with a reduced team of three 

people, a significant consolidation of the software was 

required. A summary of the efforts to consolidate the 

DCS have been reported previously [5]. 

A key part of the consolidation phase was a detailed 

analysis of the existing code base. The results of this 

process indicated that the openness and extensibility of 

WinCC OA enabled developers to implement each 

component using very different fundamental principles, 

creating difficulties for the reduced team to maintain a 

detailed understanding of the complete DCS software 

layer. Additionally, the independent development of 

components led to cases where similar or identical 

functionality was implemented multiple times. 

To reduce the overall code base size, efforts were made 

to homogenise the components and remove redundant 

functionality implementations. Initially it was easy to 

identify areas of code to target and improve, leading 

towards the goal of a cleaner and smaller DCS software 

implementation. Although progress was made, it was not 

possible to quantify the improvements, nor to estimate 

how much more effort was required. 

During this initial phase of code consolidation, 

developers reported seeing similar blocks of code in the 

files that they were working with. These duplicated code 

segments could easily be removed through re-factoring of 

the software, but it was notable that this duplication was 

found by chance and that other duplicates could easily 

have remained hidden. 

In order to obtain a clear snapshot of the current code 

status and to track progress with time, an automatically 

evaluated set of metrics was required. The issue of code 

duplication was one of the main motivations for adopting 

automatic software quality assessment. The ConQAT 

toolkit was selected for its modern, powerful static 

analysis tool that can detect blocks of duplicated code 

known as code clones [6]. An additional benefit was the 

graphical summaries of quality metrics, which enable 

rapid assessment of overall results and the identification 

of problematic areas to target. 

CONQAT CONFIGURATION 

ConQAT is an extensible, open source quality 

assessment toolkit that is delivered with a set of static 

analysis tools for assessing many code quality metrics.  ___________________________________________  

*Work supported by the Swiss National Science Foundation 

MOPPC088 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

306C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Management and Collaboration



Workflows, saved into individual configuration files, can 

be designed in the Eclipse integrated development 

environment [7], allowing a fully customised quality 

assessment procedure to be defined. 

A workflow for the CMS ECAL DCS software was 

defined that firstly selects the subset of files that contain 

code from a software source directory. Then, the 

following metrics are evaluated: 

• Number of files; 

• Files with functions that exceed a given length; 

• Files with nested blocks that exceed a given 

nesting depth; 

• Files that include code clones; 

• Lines of code (LOC); 

• Source lines of code (SLOC) excluding lines 

containing only white space and comments; 

• Number of executable source statements (SS); 

• Comment to LOC ratio; 

• Number of cloned SS and cloned LOC; 

• Redundancy-free source statements (RFSS). The 

concept of RFSS is defined as an estimate of the 

number of executable SS that would remain in the 

code if all clones were completely removed [8]. 

As a final step, the workflow defines how the results 

should be stored and presented. For the CMS ECAL DCS, 

the results are displayed in an HTML report, containing 

tabulated results and interactive graphics. Figure 1 shows 

an example display representing each source file as a 

rectangle whose size depends on the SLOC in that file. In 

this case, the colour scale of white to red reflects the 

percentage of lines in the file that have been detected as 

clones, with white shapes having no duplicated code and 

red shapes having the largest proportion of cloned code. 

 

 
Figure 1: A ConQAT graphic showing the prevalence of 

code cloning in the software as it was in October 2011. 

INTEGRATING CONQAT IN WINCC OA 

WinCC OA is programmed primarily through a C-style 

scripting language called CTRL. Due to the syntactical 

similarity with C, ConQAT was able to analyse the CTRL 

code without any need for customisation. Complexity 

arises from the way in which WinCC OA stores code. 

CTRL code can be stored in libraries of functions or 

standalone scripts, in which case the code is stored simply 

as plain text. It can also be saved in graphical user 

interface (GUI) definition files, with escape sequences to 

represent special characters such as the double quote. GUI 

files contain a combination of CTRL code and data that 

represent how graphical widgets should appear on screen. 

This mix of code and data can produce false positives for 

duplication checking software as the widget configuration 

data is similar in structure for many graphical objects. 

Furthermore, the JCOP Framework saves CTRL code into 

WinCC OA persistent storage objects, called data points. 

These data points can be exported from WinCC OA in a 

custom text file format for tasks such as transferring the 

objects between applications. 

To isolate the code from the GUI definition files, the 

WinCC OA feature of converting all GUI files to an 

Extensible Markup Language (XML) format was used. In 

the XML version, all code is stored under <script> 

tags in CDATA (unparsed character data) format to avoid 

the need for escape sequences. With a simple XML 

parser, the code can then be extracted and saved to 

another file which only contains the CTRL code. 

The extraction of CTRL from data point export files 

requires specific prior knowledge about the data point 

naming used by the JCOP FW. This information is used 

to search the file to identify and isolate the code from the 

rest of the data point information. 

A New WinCC OA Component 
In order to perform the CTRL code extraction and other 

preparatory actions, a new component was developed in 

WinCC OA. This tool allows a developer to manually 

trigger a quality assessment procedure and to choose the 

required quality metric thresholds. The tool takes the 

source code from a specified directory, for instance a 

checkout of a Subversion repository [9], and moves the 

files into a temporary workspace where WinCC OA can 

perform the XML conversion of the GUI files. Once the 

CTRL code has been extracted, the ConQAT 

configuration file is generated by merging a template 

workflow with the specified threshold values. The final 

action is then to trigger ConQAT to perform the analysis 

and report to the user when the execution is complete. 

This tool has been built in accordance with the 

guidelines for standard JCOP FW components and, as 

mentioned earlier, it also searches for specific JCOP FW 

named objects in data point export files. These design 

choices do not limit its use exclusively to JCOP FW 

users, so any WinCC OA developer could benefit from 

this integration tool to analyse code from GUI panels, 

CTRL libraries and standalone scripts. 

PRACTICAL EXPERIENCE 

The initial adoption of ConQAT required not only the 

design of the workflow and choice of quality metrics as 

described earlier, but also the choice of the acceptable 

thresholds for certain metrics. Thresholds were needed to 

define the maximum tolerated function length and nested 

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC088

Project Management and Collaboration

ISBN 978-3-95450-139-7

307 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



block depth, which were chosen as 60 lines and 3 levels 

respectively. In addition, the minimum length of code 

clones had to be selected to avoid detecting similarities 

between very small fragments of code. This threshold was 

set at 15 lines. These threshold values were chosen 

empirically as a trade-off between the comprehensiveness 

of the analysis results and the impact of overwhelming 

developers with numerous issues of lesser importance. 

ConQAT provided the DCS developers with the first 

quantitative assessment of the software quality, leading to 

three important findings: 

• Code cloning affected a significant proportion of 

files in the CMS ECAL DCS project; 

• There was a significant correlation between the 

files with long blocks and the files with a high 

degree of nested blocks; 

• There was no correlation between files with long 

blocks and files with significant cloning. 

With this new knowledge the code could be inspected 

to see the severity and impact of the problems that were 

highlighted with the chosen metrics. Firstly, it was noted 

that the code-comment ratio was not helpful for 

discovering real quality issues. The analysis is not able to 

distinguish between useful comments and situations 

where old, redundant code has been commented out. This 

reduces the effectiveness of the comment-to-LOC ratio as 

an indication of software maintainability. 

The findings related to long blocks and nested code 

were always significant and highlighted complex pieces 

of code. Such complex code can be difficult to maintain 

in the long term as it can take a long time to understand 

its functionality and the impact of any changes. 

The clone detection was also very accurate in finding 

similar sections of code throughout the whole project. By 

reducing the code cloning, the size of the CMS ECAL 

DCS code base could be significantly reduced, making it 

easier for developers to keep an overview of the complete 

project. By removing duplicated implementations, the risk 

of software faults caused by inconsistent evolution of 

clones [8] is also reduced. For these reasons, the issue of 

code cloning was chosen as the primary focus for 

consolidation work, in order to make the most progress in 

reducing the required software maintenance effort. 

Initially, the ConQAT evaluation process was executed 

manually by developers to enable an on-demand 

evaluation of the software code quality metrics. Due to 

positive early experiences with the tool, it was decided to 

integrate ConQAT more closely into the regular 

development processes. An automated nightly analysis 

system was implemented in order to provide regular 

feedback and to continue to provide quality monitoring 

even if developers were not specifically focussed on 

removing legacy code quality issues.  

CONSOLIDATION PROGRESS 

By periodically running the quality analysis, the 

progression of the quality metrics over time can be 

tracked. In addition, using the history of the code in a 

Subversion repository enabled the retrospective 

evaluation of metrics before the adoption of ConQAT. 

The progress in code clone elimination is shown in 

Figure 2. As shown, the number of cloned SS was 

reducing before the introduction of ConQAT. This 

indicates that the manual inspection method was partially 

effective at finding and removing code duplication. 

 
Figure 2: Progression of source statement and cloned 

code metrics before and after introducing ConQAT. 

 

The time required to fix a clone is the sum of the time 

to analyse the problem, modify the code and then test the 

changes. In particular, the testing took a significant 

proportion of time as no automated testing was available. 

The consolidation was an on-going background task, but 

there were two periods in which developers could focus 

on this work, in late 2011 and summer 2013, as shown by 

the sharp steps in the reduction of cloned SS. At other 

times, tasks such as implementing new features were of 

the highest priority. It is significant that during such 

periods, late 2012 for instance, the cloned SS do not 

increase even though the total number of SS do increase 

slightly. This demonstrates that the newly written code 

did not include clones, indicating that continuous quality 

assessment was beneficial to ensure that new code met the 

required quality standards. 

Another significant finding is that the RFSS has 

decreased almost continuously throughout the 

consolidation phase, indicating that the number of 

statements not affected by code duplication has also been 

reduced. This can be explained by the approach taken to 

deal with the code clones indicated in the quality analysis. 

The simplest way to address the issue is to focus purely 

on the affected lines and to make the smallest change 

necessary to remove the cloning. Alternatively, by 

looking at the implementation reasons leading to the code 

clones, it is possible to re-factor a larger portion of code 

which not only removes the duplicated lines, but can also 

reduce the number of redundancy-free lines needed to 

achieve the same functionality. By adopting this second 

approach, the size of the CMS ECAL DCS software was 

reduced by more than would have been achieved by 

targeting only the cloned code. 

MOPPC088 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

308C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Management and Collaboration



 The current status of the CMS ECAL DCS code base 

is that the code cloning issue has been minimized. There 

remain around 392 cloned SS spread amongst 12 files. 

Each of these cases has been analysed and they typically 

involve very simple, repetitive pieces of code. To address 

these issues, the code would need to be made more 

complex and it has therefore been decided that there is no 

benefit to remove them. To visualise the progress made 

since the introduction of ConQAT in October 2011, the 

current status of code cloning in Figure 3 can be 

contrasted with Figure 1. The small number of findings 

that cannot easily be resolved demonstrates that the 

significant majority of clones detected by ConQAT were 

relevant and important to guide development efforts in 

consolidation of the code. 

 

Figure 3: A ConQAT graphic showing the current status 

of code cloning in the software. 

 

The quality metrics of long functions and deeply nested 

blocks were not the primary focus of the consolidation 

effort. However, developers have dedicated some time to 

reduce these issues, particularly in code that was re-

factored due to code cloning issues. The progression of 

the number of files affected by the different quality 

metrics is shown in Figure 4. The figure also shows the 

total number of files in the CMS ECAL DCS software 

project. While the total number of files has remained 

almost constant since early 2012, the number affected by 

quality issues has been reduced. 

The code cloning problems have now been fully 

addressed. The remaining quality metrics will be the 

focus of the consolidation task in order to improve the 

readability of the code. 

CONCLUSION 

A manual inspection of the CMS ECAL DCS software 

raised awareness of quality issues within the code base. 

Preliminary work to resolve these problems was 

successful but a detailed, automatic analysis of the code 

was required to accurately identify the location of all 

quality issues. 

By adopting ConQAT and building a tool to integrate it 

with WinCC OA, a regular analysis of the software could 

be performed. A set of quality metrics with suitable 

thresholds were defined in order to direct the developers 

to the problematic areas in the code. 

Code cloning was targeted as the main focus to achieve 

a smaller code base that would be easier to maintain. The 

cloned SS were reduced from around 20,000 to 392 since 

ConQAT was introduced in October 2011. In the same 

period, the total SS has been reduced from around 45,000 

down to 24,000 lines. These reductions are mostly due to 

removal of duplicated code with a contribution from re-

factoring of larger code areas around cloned segments. 

ConQAT has been successfully integrated into the 

working procedures of the CMS ECAL DCS. It has been 

used to direct efforts in improving the quality of existing 

code and, by offering continuous quality monitoring, it 

helps to sustain the quality of the software project when 

new features are being implemented. 

REFERENCES 

[1] ConQAT, Continuous Quality Assessment Toolkit; 

https://www.conqat.org/ 

[2] D. Di Calafiori et al., “Maintaining and improving 

the control and safety systems for the 

Electromagnetic Calorimeter of the CMS 

experiment,” J. Phys.: Conf. Ser. 396, 012016 (2012). 

[3] ETM professional control GmbH – WinCC Open 

Architecture – SCADA System, http://www.etm.at/ 

[4] O. Holme et al., “The JCOP Framework,” 

ICALEPCS’05, Geneva, Switzerland, October 2005. 

[5] O. Holme et al., “Maintaining an effective and 

efficient control system for the Electromagnetic 

Calorimeter of the Compact Muon Solenoid 

experiment during Long-Term Operations of 

CERN’s Large Hadron Collider,” PCaPAC’12, 

Kolkata, India, December 2012, FRCB01. 

[6] E. Juergens et al., “CloneDetective – a workbench for 

clone detection research,” ICSE’09, Vancouver, 

Canada, May 2009. 

[7] Eclipse; http://www.eclipse.org/ 

[8]  E. Juergens and F. Deissenboeck, “How Much is a 

Clone?,” SQM’10, Madrid, Spain, March 2010. 

[9] Apache Subversion; http://subversion.apache.org/ 

 
Figure 4: Progression of total number of files and files 

affected by different types of quality defect. 

 

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC088

Project Management and Collaboration

ISBN 978-3-95450-139-7

309 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


