
TOOLS AND RULES TO ENCOURAGE QUALITY FOR C/C++ SOFTWARE
Katarina Sigerud, Wojciech Sliwinski, Vito Baggiolini, Jean-Claude Bau, Stephane Deghaye,

Jeremy Nguyen Xuan, Xavier Piroux, Gennady Sivatskiy, Ilia Yastrebov, CERN, Geneva,
Switzerland

Abstract

Inspired by the success of the software improvement
process for Java projects, in place since several years in
the CERN accelerator Controls group, it was agreed in
2011 to apply the same principles to the C/C++ software
developed in the group, an initiative we call the Software
Improvement Process for C/C++ software (SIP4C/C++).
This paper will present the SIP4C/C++ initiative in more
detail, summarizing our experience and the future plans.

BACKGROUND
In view of improving the quality and integrity of the

products released in operations, the CERN accelerator
Controls group decided in 2009 to apply a systematic
approach to quality assurance (QA). The aim was to
introduce QA activities as an integral part of the
development cycle and to standardize and unify between
the projects with regards to deliverables, deployment and
release procedures. We call this initiative SIP, the
Software Improvement Process and it was first applied for
the Java projects in the group [1].

The C/C++ software in the group is developed by
several projects in separate sections. Most of the projects
were already applying some quality assurance techniques
but there was no common effort in their approaches and
several aspects of quality assurance were not addressed,
e.g. static code analysis, unit testing or continuous
integration.

Inspired by the success for the Java software, it was
agreed in 2011 to apply the same principles to the C/C++
software developed in the group, an initiative we call the
Software Improvement Process for C/C++ software
(SIP4C/C++).

OBJECTIVES
The objectives of the SIP4C/C++ initiative are: 1) agree

on and establish best software quality practices, 2) choose
tools for quality, and 3) integrate these tools in the
software development process.

RESULTS
After a year we have reached a number of concrete

results. In the areas of standard quality assurance
practices like unit testing, static code analysis and
continuous integration, we have investigated the available
tools and agreed on a common set of tools. In addition to
this, we have implemented manifest file generation with
dependency information and runtime in-process metrics.
To automate the use of these tools, we have implemented
a common build tool based on GNU Make, which

standardizes the way to build, test and release the C/C++
binaries, libraries and executables.

A Common Build Tool
All software projects participating in the SIP4C/C++

initiative have joined forces and agreed to share a
common software build and release process based on a
common Makefile. This Makefile, called Make.generic,
contains a common set of targets used by all projects.
Besides the fundamental ones, it has targets to run the unit
tests, to run Valgrind memory profiler, to build the demo
programs, to generate code documentation, to produce a
Manifest file as described in the next section, to create a
SVN tag or branch and to deploy the binaries into the
binary repository. Make.generic also standardizes certain
configurations: it defines a set of compilation flags agreed
on by the SIP4C/C++ members; it enforces a common
directory structure for both the source code repository and
for the binary repository; a common naming convention
and versioning scheme for all released products.

The Manifest
In our software development process, we want to

include certain build-time information into a binary,
namely its name, version, build time, creator, compiler,
OS, CPU architecture, etc. We call this information a
“manifest”, inspired by the Java manifest. The manifest
must be easy to retrieve at runtime using the CMX API
(see the chapter related to the runtime metrics). It should
also be retrievable without having to execute a binary and
for binaries that cannot be executed e.g. libraries.
Furthermore, if an executable contains several statically
linked libraries, the manifest of all those libraries must be
contained in the resulting executable. This is vital e.g. for
troubleshooting scenarios, where we need to examine the
versions of all libraries used to build the resulting
executable. Before we started using manifests, the only
information available about a given binary was contained
in the file name and the file system location where it was
stored (file name, creation time, uid of the creator). This
solution was much less robust and powerful, because the
information got lost if a library was copied to another
location or linked into an executable. Sample manifest
information is shown in Figure 1 below.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC087

Project Management and Collaboration

ISBN 978-3-95450-139-7

303 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 1: Example Manifest as extracted by ident..

Our Manifest implementation is based on the RCS

identity keywords and the Linux ident command. This
tool relies on putting special strings into the binary.
Make.generic generates two files for this purpose: a
header file with constants used to expose the manifest
information at run-time, and a simple text file that is
attached to the end of the binary using the objcopy
utility. The latter approach was necessary for libraries,
because the compiler interpreted the manifest variables as
“unused code” and removed it.

Unit Testing, Mocking and CI
Most of the C/C++ projects applied some testing policy

to their software, however as the tests could be heavy to
run, and there was little or no automation, they were not
always run before committing the changes and releasing
the product.

As for the Java software, we wanted to profit from the
benefits of unit testing for the C/C++ software, therefore
we investigated the available frameworks for the C/C++
software that could facilitate testing. The different
frameworks were evaluated based on criteria that were
grouped into fundamental, mandatory and desirable
features. Based on this evaluation, we decided on the
Google Test framework [2]. The example output from
running unit tests is shown in Figure 2 below.

Figure 2: Example output from running C++ unit tests
written using the Google Test framework.

To be able to fully isolate the class being tested, it is
important to mock out functionality in adjacent classes.
For this purpose, we agreed to use the Google Mock
framework [3].

For the Java projects, we are relying on a Continuous
Integration (CI) server (Atlassian Bamboo [4]) for early
detection of problems, especially between dependent
projects. With unit tests available also for the C/C++
projects, we wanted to gain the same benefits. As running
of the tests is integrated with the common build tool, they
can be triggered from our CI server, after committing the
changes to the source code repository. Next, a build report
is generated and notification is sent to the responsible in
case of build or test failures. See Figure 3.

Figure 3: Test results in the CI server

Static Code Analysis
Code reviews by peers are very beneficial but also very

time consuming, therefore most projects can only afford
to apply this kind of review to the most complex parts of
the codebase. Instead, we could benefit from running
static code analysis tools over all our codebase to
automatically spot the most common mistakes and bug
patterns. For C/C++ projects, we are using the Coverity
tool [5]. The experience so far is that it can detect many
common programming mistakes, so any project could
benefit from performing a regular code analysis, Fig. 4.

Figure 4: Example Coverity report with highlighted
code defect.

.

.

MOPPC087 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

304C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Management and Collaboration

Another type of static code analysis for C/C++ projects

is the compile options. As it is a good practice to keep the
same flags across the projects depending on each other,
we have agreed on a set of the compile options common
to all C/C++ projects in the group. These options are
integrated with the Make.generic build tool.

It must be noted that compiler options, Coverity and
other static code analysis tools must be carefully
configured. It is often even necessary to fine-tune the
analysis rules for specific projects. Without that, these
tools will flood the developer with hundreds of warning
messages, many of which even turn out to be “false-
positives”. Without this configuration effort static
analysis tools can even be counter-productive.

Runtime In-process Metrics
The knowledge of the internal, runtime state of the

operational processes is essential for problem diagnostics
as well as for constant monitoring for pre-failure
recognition. The CMX library follows similar principles
as JMX (the Java Management Extensions) and it
provides similar monitoring capabilities for C/C++
applications. It was implemented as a lightweight C/C++
library, providing a sub-set of JMX’s extensive
functionality. It allows registering and exposing runtime
information as simple counters, floating point numbers or
character data that can subsequently be used by external
diagnostics tools for checking thresholds, sending alerts
or trending. CMX uses shared-memory technology to
ensure non-blocking read/update actions, which is an
important requirement for real-time processes. CMX was
integrated with DIAMON [6] - CERN’s Diagnostic and
Monitoring system. Detailed CMX architecture, design
and characteristics are outlined in a separate paper [7].

CHALLENGES
The main challenge for the SIP4C/C++ working group

was to agree on common standards and tools. In most
cases the involved projects already had well-established
routines and tools, especially in the area of build and
deploy. Thanks to the collaborative spirit of all parties
involved, we have already achieved the concrete results
described above and the projects have made the necessary
changes to adhere to what has been agreed.

Another challenge has been to identify appropriate
tools. With our current criteria for choosing tools (open-
source, easy to use, active developer community, good
documentation), the choice is quite limited.

FUTURE PLANS
The next step for the SIP4C/C++ initiative will be to

draw conclusions from the early adopters of the Coverity
tool and decide if its use should be extended to all C/C++
projects in the group.

All projects should be encouraged to use the CMX
library for exposure of runtime, in-process metrics and
easy integration with the DIAMON monitoring system.

As seen for the Java projects, the unit test coverage is
an important metric to encourage developers to do quality
assurance. The SIP4C/C++ working group should identify
and agree on a common tool to facilitate the code
coverage analysis. An initial investigation has been done
but no conclusions have been drawn yet.

REFERENCES
[1] K. Sigerud et al, “The Software Improvement

Process – Tools and Rules to Encourage Quality”,
ICALEPCS’11, Grenoble, France, October 2011,
THBHMUST04, p. 1212 (2011);
http://accelconf.web.cern.ch/AccelConf/icalepcs2011
/papers/proceedings.pdf.

[2] GoogleTest: https://code.google.com/p/googletest/
[3] GoogleMock:

https://code.google.com/p/googlemock/
[4] Bamboo: http://www.atlassian.com/software/bamboo
[5] Coverity:

http://www.coverity.com/products/coverity-save.html
[6] W. Buczak et al, “DIAMON2 – Improved

Monitoring of CERN’s Accelerator Controls
Infrastructure”, ICALEPCS’13, San Francisco, CA,
USA, October 2013.

[7] F. Ehm et al, “CMX - A Generic In-Process
Monitoring Solution for C and C++ Applications”,
ICALEPCS’13, San Francisco, CA, USA, October
2013.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC087

Project Management and Collaboration

ISBN 978-3-95450-139-7

305 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

