
HARDWARE INTERFACE INDEPENDENT SERIAL COMMUNICATION*

P. Kankiya, J. Jamilkowski, L. T. Hoff, BNL, Upton, NY, USA

 Abstract
The communication framework for the in-house

controls system in the Collider-Accelerator Department at
BNL depends on a variety of hardware interfaces and
protocols including RS232, RS485, GPIB, USB, Ethernet
and CAN. IISC is a client software library which can be
used to initiate, communicate and terminate data
exchange sessions with devices over the network. It acts
as a layer of abstraction allowing a developer to
implement communication with these devices without
having to be concerned about the particulars of the
interfaces and protocols involved. Details of
implementation and a performance analysis will be
presented.

INTRODUCTION
A common problem faced when providing equipment

control infrastructure for different accelerator branches
such as vacuum, power supply, RF etc. is the diversity in
communication protocols which is produced by the
competing manufacturers. There are multiple factors such
as cost, functionalities, and features involved in buying
electronic equipment’s and it is difficult to set a standard
rule when choosing a device for a specific task. Hence the
controls engineers are usually presented with varied
choices of hardware interfaces. It would be ideal if
somehow there was a way to generalize the software
development effort involved when bringing each of these
pieces of equipment on-line with a minimal code bloat
and duplication.

Overview of Existing Systems
Particle accelerators are fitted with power meters,

motion controllers, actuators, sensors etc. The control
access to these instruments is provided by a logical device
object known as ADO (accelerator device object). ADO is
a C++ container type class which provides a software
view of a collection of collider control points known as
parameters. It is traditional practice to house the code for
establishing connection with a device via a standard bus
interface system, inside the ADO program. The diversity
in physical interfaces makes the ADO development
process some-what non-uniform.

This also means software developers, must have
detailed know-how of every communication protocol in
use. Although the nature of the communication is uniform
mostly throughout the hardware interface protocols, their
varying methods of implementation add a significant level
of code complexity.

In absence of the abstraction layer, all bus specific IO
operations are implemented inside the ADO code. It
makes ADO code more error prone, and susceptible to
memory leakages. Also adds the overhead of shared
resource management.

There have already been efforts in the industry to
standardize the hardware communication interfaces by
using message protocols such as SCPI which is a standard
for syntax and commands to use in controlling
programmable test and measurement devices [1]. Since a
large number of devices follow this command set, it will
add a great amount of code re usability if the API
sending these operation strings is also standardised. This
helps in automating the process of basic communication
with any kind of device. Later the application ADO can
be customised to add specific intended functionality.

Figure 1: Addition of IISC layer in ADO code.

PROPOSED SOLUTION
In this paper we focus on defining an approach to a

software abstraction layer called IISC which eliminates
the code complexity due to the variety of physical bus
interfaces.

The idea behind this solution is to base programming
logic on the interfaces of the high level objects used,
rather than on internal implementation details. IISC is a
tool to provide a steady and homogeneous abstraction on
top of accelerator devices whose hardware

 * Work supported by Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of
Energy.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC039

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

169 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

implementation is heterogeneous and evolves over
time[2].

SOFTWARE IMPLEMENTATION
The implementation mechanism adopted for IISC

library is based on the design pattern called the factory
method in C++[3]. The intention of factory method is to
define an interface for creating an object, but let the sub-
classes decide which class to instantiate. The goal of this
design pattern is to redirect the normal way of
instantiation of class X to somewhere other than the
constructor without unacceptable consequences (memory
leakages) or a performance hit. A factory pattern is used
here because we need to create one of many possible
objects based only on information that is known at
runtime.

Figure 2: Class Diagram.

The UML diagram (Figure 2) explains the hierarchy of
the classes and how the pattern works.

· Product: here is the IISCDev class which is the
abstract class responsible for separation between the
application and a family of bus interfaces, by
introducing weak coupling instead of tight coupling
hiding concrete classes from the application.

· Factory: declares the method FactoryMethod, which
returns a IISC object.

· ConcreteFactory: overrides the generating method
for creating concrete IISC product objects.

· Concrete Product: the subclass object returned by
Factory. E.g. GPIBDev, ENETDev, etc.

The product class constitutes following fundamental
member functions to establish communication: devOpen,
devConfigure, devWrite, devRead, devClose,
devReonnect. These functions are common to all bus
interfaces. The support libraries (e.g. “ni488.h” for IE488
bus interface), provide variants of these member
functions. These member functions in the base class
IISCDev, are declared virtual, and will be overridden in
the child class with respect to each bus interface class.

An IISCDev is a "handle" for accessing hardware
interface services and for making low level system calls

implemented by drivers. Therefore it defines a logical
division of code between control parameters and device
driver libraries[4].

It maintains the following information about the active
communication irrespective of the protocol class that is
instantiated through the factory method.

· IISCDevStatus - A class variable to describe the
status returned by methods, could be errors.

· IISCDevException - A class variable to describe
exceptions.

· IISCDevLock() - A method for shared resources .
· IISCDevInterface - A class describing the interface.
· IISCDevConfig - A class containing configuration

parameters based on protocol in use.
A key function IISCDevConnectionMgr() is

responsible for maintaining connection with hardware
throughout the life of a program. This is attained by
constantly polling the device for valid data, and
implementing a reconnection mechanism in absence of
valid data. Since this process is vital regardless of the
protocol in use. This functionality
can be easily embedded in the IISC layer without the
software developer having to write code for each new
application.

Member methods enlisted inside IISDev class are class
is implemented as a wrapper function inside the
subclasses. These wrappers are written on top of IO
libraries which are used as, cross-platform C++ library[5]
for network and low-level I/O programming that provides
developers with a consistent asynchronous model using a
modern C++ approach.

PRACTICAL IMPLEMENTATION
A use case for testing IISC library is a set-up for data

acquisition from a delay generator device via IE488
standard interface.

An ADO program was written to provide user access to
this data. With addition an abstraction layer (Figure 1) the
task of IO operations are deferred from the ADO to the
IISCDev class.

 An instance of IISCDev class is instantiated in the
ADO code. The runtime arguments of constructor of
ADO provides the type of interface in use. Hence, the
factory returned a GPIBDev type of object.

 The generic IO method devOpen, is used to open gpib
device in participation. The devOpen function is transient
wrapper function which is overridden by the national
instrument's ibdev() function call[6] inside the subclass.
In similar manner other device IO operations are carried
out.

This formulation of the ADO class resulted in
prominently reduced code size due to omission of
interface details. This also standardises the development
effort.

MOPPC039 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

170C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

One of the advantages of execution of layered
architecture is, the ADO layer is allowed to make changes
in physical interface implemented without any code
alteration or recompilation . For example, the device used
in this test set-up , is able to utilise Ethernet
communication with only changing ADO constructor
arguments and not internal coding algorithm.

Scope of Improvement
For future versions of IISC library, it will be beneficial

to include call back routines for better and faster
asynchronous data update. It will allow more than one
client for a shared resource simultaneously.

Advantages and Limitation
With the help of IISC layer, the standard code interface

with device drivers becomes easier to maintain. This
library is absolutely portable because it has no
dependence on the existing BNL controls framework. It is
easily extensible to many more hardware bus interfaces
by simply adding a new sub-class, and bus specific
configuration parameters. IISC being a high level
abstraction layer can add small amount of delays when
exchanging messages with the device.

CONCLUSION
A software abstraction library has been implemented

to hide details of implementation of standard
communication bus interfaces. It is used to simplify and
tailor the interface to a client code module ADO with the
intent of making it more intelligible or relevant to the
user. Features for future versions of the library are
discussed and some performance limitations have been
highlighted.

REFERENCES
[1] http://sdphca.ucsd.edu/Lab_Equip_Manuals/SCPI-

99.pdf
[2] “EQUIPMENT SOFTWARE MODELLING FOR

ACCELERATOR CONTROLS” Michel Arruat,
Stephen Jackson, Jean-Luc Nougaret, Maciej Peryt,
Accelerators and Beams Department, CERN,
CH1211 Geneva 23

[3] “Design Patterns: Elements of Reusable Object-
Oriented Software” By: Erich Gamma, Richard
Helm, Ralph Johnson, John M. Vlissides

[4] “EPICS: ASYNCHRONOUS DRIVER SUPPORT”
Martin R. Kraimer, Mark Rivers,Eric Norum,
Argonne National Laboratory, Argonne Illinois 60439
USA

[5] Boost Asio Library by Christopher Kohlhoff
[6] NI-488.2M™ Software Reference Manual.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC039

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

171 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

