
INTEGRATED MONITORING AND CONTROL SPECIFICATION
ENVIRONMENT

C. Subhrojyoti, N. Swami, TRDDC, Pune, India
Harshal G. Hayatnagarkar, Pune, India

Abstract
Monitoring and control solutions for large one-off

systems are typically built in silos using multiple tools
and technologies. Functionality such as data processing
logic, alarm handling, UIs, device drivers are
implemented by manually writing configuration code in
isolation and their cross dependencies maintained
manually. The correctness of the created specification is
checked using manually written test cases. Non-functional
requirements – such as reliability, performance,
availability, reusability and so on – are addressed in ad
hoc manner. This hinders evolution of systems with long
lifetimes. For ITER [1], we developed an integrated
specifications environment and a set of tools to generate
configurations for target execution platforms, along with
required glue to realize the entire M&C solution. The
SKA [2] is an opportunity to enhance this framework
further to include checking for functional and engineering
properties of the solution based on domain best practices.
The framework includes three levels: domain-specific,
problem-specific and target technology-specific. We
discuss how this approach can address three major facets
of complexity: scale, diversity and evolution.

INTRODUCTION

The typical life cycle phases of any software
development project starts with analysis such as stake
holder needs, system requirements, architecture choices
followed by detailed design of the target system, its
implementation, verification and validation, integration
and testing. Execution of each of these life cycle phases
is usually supported by a collection of tools and
technologies which enable maintaining traceability across
these phases. Doors[3], SysML[4] are example which
provide support during requirements analysis, architecture
and design of software systems. Although in theory it is
possible to use SysML all the way up to generating the
final executable code from the high level design model, in
practice it is seen that it is not very strong in its adaptation
to building Monitoring and Control (M&C) solutions for
real-time systems. This is due to various reasons such as
difference in paradigm between modeling and
implementation domain, lack of support for project or
domain specific needs and above all it is a lot of work to
model all aspects of M&C using a modeling tool then
generate code from it.

Our participation in the ITER project in the design and
development of their M&C solution and later with SKA
project for their M&C aspects helped us appreciate the
need for building methodologies and tools that enhances

the current state of the art to cater to the needs for
building M&C solutions for projects like ITER and SKA.
Our belief is that we can leverage from the existing tools
and methodologies like SysML and our knowledge from
the M&C and related domains, to create a complete
specification model for M&C. This specification model
can then be instantiated through a specification
environment to build M&C solutions spanning across
different physics domains. This paper presents the idea in
the context of ITER and SKA. The first section of the
paper describes the current state of practice highlighting
the methodologies and tools typically used in a software
development projects. Second section describes the
approach taken by ITER to improve upon the existing
practice. Third section describes how the lessons learnt
from ITER could be enhanced further so that it can be
useful for other projects like SKA.

STANDARD PRACTICE
The current trend to architecting and designing both

software and non-software including M&C systems is to
use techniques from the system engineering methodology.
The entire process can be understood from the figure 1.
As per our experience, the identification of the design
requirements, components along with their functionalities,
engineering qualities, relationships and dependencies are
ideally captured and analyzed in the first two steps in the
life cycle. For example, the analysis of stakeholder
objectives and system requirements typically get captured
as texts supported by tools that allow them to be managed
for version control and so on. Then the requirements are
analyzed and elicited further through modeling and meta
modeling tools such as SysML. These tools allow
modeling the architecture and design of the system.
Translating the design into actual realization happens in
the third and the fourth step. These step is typically a
manual activity where the design created using the
modeling tool is typically translated manually to either to
SCADA specific input format which internally translate
them to lower level executable or directly into C/C++
code.

Challenges with Existing Practice
We find the approach of model based development

useful for building M&C solutions but not without
caveats. Some of the challenges faced while using the
standard approach along with the associated tools and
technologies are mentioned below:
 The notion of stakeholder objectives and values don’t

get properly translated into the design and hence
loose tractability.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOCOBAB06

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

47 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 1: Typical life cycle of the M&C realization process.

 Capturing and analysis of the quality aspects in the

design phase and making sure that they translate into
the subsequently realization strategy is not very well
supported in the system engineering modeling
environment.

 Although support for code generation for standard
programming languages such as C++/Java from
SysML model exists, there is lack support for more
specific platforms such as EPICS [5]. Support for
round tripping to pull manual changes in the
generated source code back into the model becomes
hard due to difference in paradigm ,i.e. programming
language vs configuration source files.

 Since the model is manually translated there is a huge
possibility of having inconsistencies such as creating
duplicate implementation of components in the
realized code, inconsistency in names, ad hoc
interfaces and so on.

 Integrating the individual realized pieces of the M&C
solution developed across the geography into the
large M&C environment becomes a challenge.

 Also the more generic system engineering tools are
not very well aligned to the M&C domain for which
it is being used and hence it is not possible to do
domain specific analysis of the design created using
these modeling environments.

 It is difficult for the generic system engineering tool
to adapt to the domain or problem specific
vocabulary.

ITER APPROACH
In order to mitigate some of the above challenges

specially the ones related to geographically distributed
development teams, ITER conceptualized the Self-
Description Design (SDD) Editor Framework. This
framework aims to incrementally integrate
Instrumentation and Control (I&C) components built by
various teams across geography for the ITER project. The
idea is to provide a full integrated view of the systems and
subsystems which are under the purview of CODAC, the
supervisory M&C system at ITER. The SDD editor
allows specification of the I&C components along with
their structures, properties and functionalities using a
common abstract vocabulary created by the ITER team

which is then automatically translated into the underlying
M&C implementation technology specific format which
are EPICS, CSS and S7 PLC.

As part of this framework, a set of tools have been
implemented based on the concept of model-driven
development, which facilitate capturing high-level
specification of ITER's I&C component into a domain
model, checking for various types of inconsistencies in
the model, generating code specific to target technology
such as EPICS and CSS and also, in some cases,
retrofitting the changes made in the generated code back
into the specification model.

SDD Editor Components
The architecture components of the SDD editor are

briefly explained below -
Model: Central to this environment lies ITER's M&C
model, which acts as mould to hold high-level
specification of the M&C system description called as
'Self-description data' (SDD). In the philosophy of model-
driven development, this model acts as 'Platform-
independent model' (PIM). One of the important
highlights of this model is the separation of the structural
and functional components of the I&C components as
Physical Breakdown Structure (PBS) and Functional
Breakdown Structure (FBS) respectively. In PBS, highest
level of organization is termed as Plant System (PS),
which holds physical components. Physical components
are generically defined and are simply tagged as one of
the many standard types defined by the ITER project.
Only the part of the physical components in the I&C
system that deal with sensor or actuator signals are
captured as part of this definition. These physical signals
are specified as part of respective components and are
interfaced with rest of the system through slow and fast
controllers. These controllers are part of both PBS and
FBS. Functionally, the ITER system is decomposed into
three levels 'FBS Level 1' - maps to coarser plants
systems at highest level, FBS Level 2 - maps to coarser
I&C coordination, and FBS Level 3 - maps to individual
I&C function such as temperature control and so on. Each
I&C function has one or more functional variables which
are entities with lowest granularity. A variable captures
additional description such as alarm and archiving details,
and needs to be either mapped to a physical signal or a

MOCOBAB06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

48C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

computation. Variables too are deployed on control units
such as fast controller or plant system host (PSH). For any
given FBS level 2, a plant system I&C (PSIC) entity is
defined and is represented by one more control units, but
only one PSH. PSH is also responsible for providing a
generic or abstract interface of a plant system to the rest
of ITER which it does through deriving global states of
the plant system, e.g. if the system is up or down or in
maintenance. To cater to the need of a PSIC to coordinate
across plant systems, a higher level entity 'I&C Project'
has been introduced to act as a place holder. Realization
of this model consists of an entity-relationship model, its
implementation as a relational database schema, a
collection of Java classes with mapping to tables of this
schema and domain rules to check consistency of the
data. Operations on data are controlled by API exposed
by the model implemented in Java. The API’s implement
abstract interfaces so that the underlying implementation
can change in due course of project execution and allow
smoother evolution of model and its consumers. There
are project and domain specific rules built into the model
that validates the data provided by the user and notify in
case of issues that require corrections. As per convention,
only a correct SDD specification can be used for code
generation. The model also supports capturing
implementation platform-specific information as well.

User Interface: SDD editor is available both as a
standalone Eclipse based product and also as a web-based
based application. Using the SDD editor, a user can
populate self-description data of plant systems, which
gets pushed into the model and then to the database
through model APIs. Consistency checks are built inside
the editors which can be invoked independently by users.
The editors facilitate in code generation, navigation as
well as retrofitting the changes back into model.

Code Generation: Code is generated as part of 'Forward
Engineering' process. The code generation module refers
to populated SDD, checks for consistency and finally
generates source code and configuration files for various
platforms that actually realize the ITER M&C system
'CODAC'. The platforms include 'EPICS', 'Control
System Studio' (CSS), 'Siemens Step7 PLC development
environment' and 'RedHat Enterprise Linux' (for shell
scripts). Each platform require generation of multiple
artifacts - usually text files - called as 'targets', each target
having its own 'Platform-specific Model' (PSM) and
associated transformations - from PIM to PSM model-to-
model (M2M) transformation - and - from PSM to text
model-to-text (M2T) transformation. To ease the latter
transformation, text based templates are defined with
appropriate blanks to be filled by PSM instance. A
template engine evaluates these templates for a given
PSM instance and for ITER SDD. Apache Velocity has
been chosen as the template engine/framework for this.

Retrofitting: Artifacts generated as part of forward
engineering can be enhanced or modified using their

respective platform provided tools. However, these
changes are lost when code is re-generated. To tackle this
problem when it is semantically possible for some of the
important platforms such as EPICS, the technique of
retrofitting has been employed. It involves parsing of text
files using available or specifically written parser routines
to identify changes, which are then pushed back into the
model. Changes such as deletions or renaming are not
retrofitted and they need to be performed from either of
the editors.

Handling Complexity
Some of the challenges with respect to complexity that

the SDD approach deals with are mentioned below:

Scale: Mechanism to verify and handle specification of
large volume of Self-Description data(>=1000 variables)
[6][7]. Feature to import bulk data from external sources
solves this problem.
Geographically Distributed Development: Mechanism
to integrate components developed across geography.
Implements a central SDD repository where all the
created specification is stored [7][8].
Diversity: Mechanism to selectively retarget the SDD
specification into target technology specific platforms.
Support through the implementation of translator plugins
and code generation templates [6][7][8].
Connectedness: As complexity of SDD specification
grows due increased interdependency, it becomes
challenging to verify the correctness of the target
behavior. SDD tools facilitate this through incremental
addition of domain specific rules [6][7][8].
Evolution: The complexity due to the long lifetime of the
project creates stringent design requirements which
mandate modularity, reusability, flexibility and
adaptability to newer target technologies [7].

FUTURE ENHANCEMENT
The experience at ITER helped us conceptualize an

integrated specification driven environment for building
M&C solution that could be used across all similar
projects such as SKA and help face similar challenges due
to scale, complexity, diversity, safety criticality,
reliability, availability, response times, data volumes, and
timelines and so on. The section below provides our
thoughts on how this approach can be enhanced.

Complete M&C Domain Model
Taking the ITER specification model as the basis we

tried to identify and generalize the various types of
specification elements that the M&C domain model will
need to hold:

 Control logic: List of commands and parameters,
responses from command execution, validation rules,
FSM control logic, control actions & scripts,
command distribution logic, response aggregation
logic, state management specifications.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOCOBAB06

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

49 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

 Communication: Addresses and ports,
communication protocols and so on.

 Data acquisition and processing: Data acquisition
specifications, validation rules, worldview database
schema, subscriptions, feedback control, logging &
archiving specifications.

 Events handling: Event and alarm detection rules,
events and alarms acquisition specs, filtering of
events and alarms, alarm handling and propagation
specifications.

 User interface specifications: Data elements,
display widgets, layout, behaviors.

 Safety and security specifications: Threat detection
and response rules, authentication and authorization,
data protection and network security configurations.

 Reliability and availability: Fault detection and
handling, configuration of mechanisms such as
heartbeats, watchdogs and failover.

The intention is to capture the consistency relationships

and dependencies across these specification items failing
which may result into various inconsistencies.

The implementation of this domain model is a meta
modeling task which is done by synthesizing the
specification modules based on different existing
methodologies such as SysML and standards such as
RBAC[9] for security and so on. The model also is
augmented with capturing consistency relationships.

Specification Environment
Our belief that the specification environment would

need to support the typical M&C development life cycle
which are as described below:

 Define the controller requirements. Identify the
context, the physical system and interfaces between
themas a set of parameters and behaviors.

 Decompose the M&C system into subsystems,
typically following the hierarchy of decomposition
of the physical instrument. Allocate the controller
requirement among subsystems, determining the
functional and engineering responsibilities of each
subsystem (e.g., reliability, performance, safety etc).
Capture these as blackbox specifications.

 Design how the controller coordinates subsystems
and provides services such as coordination and
alarms handling to realize the overall system
requirements.

 Iterate the above steps for each subsystem until no
further decomposition needed.

 Provide tips, hints, warnings, errors and best
practices within and across functional and non-
functional units.

The implementation of such an environment is based on
the following principles:

 Usage of standards for each aspect of the
specification model, wherever applicable instead of
inventing representations.

 Modularization of specifications, so that one module
could be replaced with a newer standard without
impacting the overall framework.

 Identification of mutual consistency constraints
among the specifications modules for different
aspects, and checking them during specifications
creation. These consistency relationships need to be
updated whenever a module is updated, or even if a
new technology platform is chosen that creates
additional consistency relationships.

 Capability to support retargeting to newer
technology in the specification model.

 Exploitation of existing tools and technologies to
minimizing effort for implementation, user learning
and so on.

 Usage of the right metaphorsto capture structural and
behavioral details visually or textually.

ACKNOWLEDGMENT
Our thanks to the ITER CODAC team for their support

while building the SDD Editor. Thanks to Harrick Vin for
his support that helped us pursue this problem further.

REFERENCES
[1] J.B. Lister, J.W. Farthing, M. Greenwald, I. Yonekawa:

The ITER CODAC conceptual design, Fusion Engineering
and Design 82 (2007) 1167–1173.

[2] A.R. Taylor, "The Square Kilometre Array", Proceedings
IAU Symposium No. 291, 2012.

[3] Cleland-Huang, Jane (2012). Software and Systems
Traceability. Springer. p. 48. ISBN 978-1-4471-2238-8.

[4] Object Management Group, “SysML Specification V1.3,”
http://www.omg.org/spec/SysML/1.3/

[5] About EPICS, http://www.aps.anl.gov/epics/
[6] W. Mitchell Waldrop: Complexity - The Emerging Science

at the Edge of Chaos (1993).
[7] Grady Booch: Object-oriented Analysis and Design 3E

(2007).
[8] Erik W. Aslaksen: Designing Complex Systems -

Foundations of Design in the Functional Domain (2012).
[9] D. Ferraiolo, R. Sandhu et al, RBAC Standard paper:

TISSEC), 4(3): 224-274, Aug. 2001.

MOCOBAB06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

50C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

