
 MEERKAT CONTROL AND MONITORING
- DESIGN CONCEPTS AND STATUS

L van den Heever, SKA SA, Cape Town, South Africa

Abstract
This presentation gives a status update of the MeerKAT

Control & Monitoring (CAM) subsystem focusing on the
design concepts and key design decisions. The
presentation is supplemented by a poster of the current
KAT-7 CAM system (including a demo). The vision for
MeerKAT includes to: a) use Offset Gregorian antennas
in a radio telescope array combined with optimized
receiver technology in order to achieve superior imaging
and maximum sensitivity, b) be the most sensitive
instrument in the world in L-band, c) be an instrument
that will be considered the benchmark for performance
and reliability by the scientific community at large, and d)
be a true precursor for the SKA that will be integrated
into the SKA-mid dish array.

MEERKAT PROJECT UPDATE
KAT-7, 7-dish engineering prototype for MeerKAT, is

already producing exciting science and is being operated
24x7. The first MeerKAT antenna will be on site by the
end of this year and the first two Receptors will be fully
integrated and ready for testing by April 2014. By
December 2016 hardware for all 64 receptors will be
installed and accepted and 32 antennas will be fully
commissioned.

With regards the MeerKAT CAM subsystem we have

completed the MeerKAT CAM Preliminary Design
Review in July [1] & [2] with an international panel of
domain experts, and the MeerKAT CAM team is
currently developing the MeerKAT CAM requirements
[3] for the MeerKAT Receptor Test System (first 4
receptors) to be ready by Jan 2014.

EVOLUTION OF MEERKAT CAM
DESIGN

SKA South Africa started in 2004 with an XDM
project, which was followed by the Fringe Finder project
(the first 2 KAT-7 antennas), completed by end 2009.
Then the full KAT-7 project followed and all 7 antennas
are currently fully operational 24x7. SKA SA are now
busy with the MeerKAT project (64 antennas in the
Karoo by 2016). Many people were involved over the
course of these projects in providing ideas for
improvements and enhancements of the CAM subsystem
as part of the CAM team and other teams in the project.
The current MeerKAT CAM design is a result from all
these efforts, a learning process on all these project,
maturing our understanding of the requirements for a
remotely operated radio telescope and most recently a

concerted design effort to fully document and formally
review the envisaged MeerKAT CAM design with a view
towards potential scalability to the size of SKA Phase 1.

MEERKAT CAM DESIGN CONCEPTS
AND KEY DESIGN DECISIONS

This section highlights the key concepts and
subsystem-wide design decisions of the MeerKAT CAM
subsystem.

Homogenous Node Management
The CAM subsystem ensures homogeneous node

management (the term “node” is used for a virtualized
container running a configured set of CAM processes).
• CAM nodes are virtualised across various physical

servers (CAM hosts). The same suite of software is
deployed on each CAM node.

• A single headnode is identified as the system
controller for the set of nodes and has the only
copy of the active configuration that is served from
the headnode to all CAM nodes.

• Each CAM node (including the headnode) initially
runs only a katnodemanager service that waits for
the system controller to register the subset of CAM
processes to run on that node (as retrieved from the
active configuration on the headnode).

• This allows for seamless scaling when
performance demands it as it is extremely easy to
add new servers that host more nodes and
distribute the processes amongst the new nodes.
The only action required is updating the active
configuration to identify the new nodes and the
processes to run at each, and then restarting the
system.

KATCP for Standardised Communications
Underlying the CAM concept of KAT-7 and MeerKAT

is a standardized communications, reporting, controlling
and logging protocol, the KAT communications protocol
(KATCP) [4] & [5]. The KATCP protocol is a text based,
human-readable protocol build on TCP/IP and supports
flexible, run-time configuration by providing
interrogation of sensors and requests/commands; these are
used by the clients to discover the configuration of
devices dynamically.

The KATCP protocol is specified as the CAM interface

for all subcontracted and internal hardware devices and
subsystems, as well as internal communication between
CAM components. In cases where the subcontractor
cannot deliver a KATCP interface, a Device Translator is

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOCOAAB06

Project Status Reports

ISBN 978-3-95450-139-7

19 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

implemented by the CAM team to translate its specific
protocol (like modbus, OPC, web-services, Ganglia
metrics) to KATCP.

A key concept underlying the CAM implementation is

the support provided in the KATCP protocol for different
sensor strategies (sampling rates) per client. This enables
each component to request sensor updates at the rate
required by that component, e.g. the kataware
component uses a different sampling rate to generate
alarms than the katmonitor components use to archive
historical sensor data .

Another key concept in KATCP is standardised

logging. This allows devices that do not have access to
storage to forward logs over their KATCP interface to the
client. The log levels are standardized and the kind of
information expected at each level is prescribed. The level
of the KATCP logs to send over the interface can be set
through the KATCP interface.
In summary:

• KATCP supports dynamic discovery through
interrogation of monitoring points (KATCP
sensors) and commands (KATCP requests)

• Interrogation of KATCP sensors provide details
such as a description of the monitoring point,
unit of measure, nominal, warning and error
ranges, and absolute min/max values on sensors.

• Interrogation of KATCP requests includes help
on parameters and usage examples.

• KATCP defines sensor sampling to always be a
value/status combination where the status can be
one of a defined set of status values e.g. nominal,
warning, error, failure, inactive or unreachable
(each of which is well-defined). Each sensor
update is also time-stamped to indicate the time
at which the sensor value was refreshed by the
device.

• Interrogation also provides build state and
version information.

• The KATCP guidelines defines standardized
logging levels and logging format.

• KATCP is publicly released as a Python package
on PyPi.

• KATCP devices support multiple connections
• KATCP sensors are exposed to all clients, but

KATCP supports flexible reporting strategies per
client for all sensors. Each client can define its
own update strategy for sensors on a KATCP
interface; e.g. periodic with a time period, event
(on change), periodic but limited to a maximum
update rate, etc.

KATCP is used for all CAM component, subsystem

and hardware interfacing in MeerKAT. Most Inter-
process communications internal to the CAM subsystem
is also implemented through KATCP interfaces.

Standardised Central Logging
The KATCP guidelines also specifies standardized

logging for devices/subsystems. The CAM proxy layer,
gathers and stores all KATCP logs centrally. The level of
logging exposed on each KATCP interface is
configurable via KATCP request. This provides a
consistent mechanism and formatting for system-wide
logs and a central store of system logs to support fault
finding and engineering tests. The CAM provides a web
interface for viewing on-line system logs, which allows
the log sources to be filtered by source and level by the
user.

Proxy Layer and KATCP Device Translators
All hardware devices and MeerKAT subsystems are

protected from direct access through a layer of proxies
implemented by the CAM subsystem. All
engineering/support/system components/tools connect via
the proxy layer and not directly to hardware
devices/subsystems. A proxy may expose one or more
devices/subsystems, and the proxy layer provides a
consistent level of aggregate monitoring information for
all its hardware devices/subsystems. A proxy may
implement special configuration/control for a device (e.g.
the Receptor proxy implements pointing corrections for
antenna pointing, and the Data proxy implements delay
calculations and gain corrections for the Correlator
Beamformer (CBF)). The proxy layer also gathers the
KATCP logs from devices and passes it on as device-logs
through Python logging to a centralized logger that stores
and displays all logs centrally.

With the Device Translators and specification of

KATCP interface for all subcontractors and subsystems,
the complete instrument is managed, controlled,
monitored and logged in a standard way, and exposed to
the rest of the system through the proxy layer. This allow
for the CAM team to develop a Simulator that simulates
the KATCP interface and device behavior for each
device/subsystem, so that the complete CAM system can
be functionally exercised and qualified in a fully
simulated environment.

Fully Simulated System
The CAM subsystem implements a fully simulated

system up to the KATCP interface of each hardware
device and subsystem. It is possible to run a configuration
including only simulated devices, or any combination of
real and simulated devices combined. This allows full
software development, unit testing and integration testing,
including CAM subsystem qualification testing without
dependency on the availability of hardware.

Although the full KATCP interface for each device is
implemented in the simulators, the actual functionality of
all the hardware components are not fully implemented;
each simulator implements behaviour to the level required
by CAM integration testing. However, antenna pointing
and modes are simulated with realistic timing, and a

MOCOAAB06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

20C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Status Reports

representative simulation of the data output of the
correlator are implemented.

While the CAM team is responsible for developing

most of the simulators, some of these device simulators
are contractually delivered by the subsystem contractor to
ensure that, given their knowledge of the device, the
behaviour of the device is reflected with sufficient
accuracy by the device simulator. Having a fully
simulated system available is critical to CAM
Qualification Testing and has proven to be one of the
most valuable lessons learnt very early in SKA SA. Even
though it takes time to develop the simulators and keep
them aligned with changing interfaces, the CAM Team
will not hesitate one moment if asked whether to do this
or not.

Adaptive System based on Interrogation
One of the most powerful features of the KATCP

protocol is its support to interrogate KATCP servers for
monitoring points (KATCP sensors) and commands
(KATCP requests). Interrogation of sensors and requests,
down to device level, through KATCP, supports fluid
run-time detection of system configuration; e.g. when a
new monitoring point is added to any level of the system
(including a hardware device), the rest of the CAM
automatically discovers the change on-line on
connections, and includes it in the monitor store and in its
interfaces.

The CAM by design builds on this in-time interrogation

and extends that by adapting to the discovered interface in
real-time. All detected sensors are automatically sampled
and monitored, included in the archive, aggregate
reporting, and even health and status displays through
rolled up sensors, without the need for any configuration.
Sensor displays and archive displays automatically adjust
to present the sensors detected during interrogation
without having to manually change the displays in any
way. CAM also exposes all discovered requests in its low
level device control. This allows for seamless integration
as new versions of controllers/hardware are rolled out
with different sensors and requests.

The CAM’s adaptability to the underlying system
changes ensures flexibility during the construction phase
where new antennas are constructed and rolled out
periodically. This has proven extremely useful during
testing, integration and commissioning of KAT-7.

Even the CAM health and status operator displays have

been designed to automatically adjust to report on the
receptors found in the system configuration, without a
need to recompile or change the display configuration
when a receptor is added or removed. Likewise the CAM
sensor graph display that is used to extract archived
monitoring data has been designed to automatically
present all discovered sensors without the need to
recompile or reconfigure any CAM components.

Flexible Central System Configuration
The CAM provides a powerful and flexible system

configuration in human readable text files to support
integration and incremental rollout of receptors. It caters
for any combination of real and simulated devices as
CAM “sites” and is templated using Genshi [6] for easy
setup and maintenance. Each CAM site has a single
central active configuration, deployed only on the
headnode, which is served to all CAM nodes in the CAM
site by a katconfserver component running on headnode.

The system configuration also includes configurable
health displays, aggregate sensors with user defined
programmatic rules, sampling strategies for monitoring
and archiving and alarm configurations and actions.

Soft Real-time Control with Ethernet as a Field
Bus

Soft real-time implies that there will be no time critical
control loops in the MeerKAT CAM software and, where
necessary, real-time control is decentralized and pushed
down to devices. The CAM subsystem issues commands
to devices with a specific timestamp; the exact timing is
handled by the device in question. Synchronised
execution/scheduling is implemented by syncing time
from a central Timing and Frequency Reference across all
devices and specifying the same start time, which is then
independently handled by each node.

Hierarchical and Distributed Monitoring
For MeerKAT, the KATCP guidelines have been

extended to include consistent failure reporting on each
device through a proper FMECA process, as well as
standardised device-status reporting for health
monitoring. By dictating that high level failure sensors
and health monitoring sensors are to be implemented by
each KATCP device or subsystem, only a relatively small
set of standard health and failure sensors have to be
routinely managed and monitored, improving scalability.
This simplifies the design of e.g. the health-monitoring
GUI display, since all devices report consistently; the
lower level device sensors (e.g. individual temperature
sensors) are also available to the system, allowing
hierarchical drill down when more detailed information is
required. Furthermore, it gives the parties with the best
knowledge of device behaviour and failure modes and
their impact on the overall telescope system (the KATCP
device vendors and SE) the capability to incorporate this
knowledge directly into the CAM subsystem.

Each proxy also rolls up health information for
communication, sensors and functional status through
aggregate sensors that indicate the worst status of all
communications (comms.ok) and the worst status of all
sensors (sensors.ok). Each KATCP device reports an
evaluation by the unit itself of whether it is still
functioning correctly or not, notwithstanding the presence
of warnings or errors on some sensors (device_status as
ok, degraded or fail). These provide single points of
monitoring to roll up in hierarchical health reporting and

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOCOAAB06

Project Status Reports

ISBN 978-3-95450-139-7

21 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

availability and a single mechanism to display sensors for
fault finding; drill down and interrogation of lower levels
are only required when errors are reported. Failure
detection sensors are further supported by standardised
failure detection logging described in the KATCP
guidelines.

Similar to proxies that consolidate reporting across all

the devices they control, each node manager consolidates
reporting across all CAM processes it manages. Standard
sensors are exposed for each process (e.g. process_ok,
process_running) in the same way as the aggregate
reporting is done on the proxy level (e.g. sensors.ok,
comms.ok and all.ok), and is thus reflected on the health
display.

Distributed monitoring is implemented by running a

local katmonitor component on each CAM node that
monitors and archives the sensors of all the CAM proxies
and other CAM components running on that node. The
katmonitor instance writes its monitoring points to a
central katstore archive server through network file
system mounts routed through the bulk network, avoiding
network traffic bottlenecks. Any new nodes added to the
system are automatically included in the system
monitoring and archiving by simply adding the node to
the configuration and running an instance of katmonitor
on that nod. The new monitoring points are automatically
included into the rest of the system through interrogation
and the adaptive design of the CAM subsystem.

DEVELOPMENT ENVIRONMENT

Software Development Environment
The current KAT-7 CAM system is developed in

Python and MeerKAT CAM will be built on the KAT-7
CAM architecture with PostgreSQL [7] databases.

The Debian GNU/Linux based Proxmox [8] VE
hypervisor OS is used for server virtualisation.
Deployment is managed using the Python library, Fabric
[9], for scripting the automated deployment in
conjunction with an internally developed host
configuration database. Ubuntu LTS [10] is used as the
standard operating system throughout the CAM system..

Internal real-time chat is facilitated by an internal IRC
[11] chat server. The IRC server is also used to broadcast
critical alarms, since the active operator should always be
on IRC. The Mantis [12] bug tracker tracking software is
used for issue tracking during CAM development, and
also for tracking error or bug reports for the telescope as a
whole.

Version control is through Subversion (svn) [13] and
our continuous build server is based on Jenkins [14].

On-line documentation (including CAM Architecture
Descriptions, Component Specification Records,
Component Design Records, Version Description
Docuements and Deployment Procedure) is in
ReStructured Text (RST) [15] format built with Sphinx
[16].

Hardware Environment
The CAM system is hosted on standard COTS servers.

Currently development is proceeding on DELL R410
servers, but in principle any PC servers could be used.
CAM software is, however, not run directly on the CAM
servers but on virtual CAM nodes using Proxmox.
Persistent storage is hosted by an NFS server. The NFS
server will be backed by a Storage Area Network (SAN)
provided by the MeerKAT Science Processing subsystem.

FINAL NOTE

More MeerKAT talks and poster
The MeerKAT team is also presenting another talk

“Virtualization and Deployment Management for the
KAT-7 / MeerKAT Control and Monitoring System” [17]
and there is a poster too [18] at this conference.

REFERENCES
[1] L van den Heever et al, “MeerKAT CAM Design

Description, Rev 1”, SKA SA, August 2013,
http://tinyurl.com/MeerKAT-CAM-Public-Docs

[2] L van den Heever et al, “MeerKAT CAM Development
and Qualification Plan, Rev 12, SKA SA, August 2013,
http://tinyurl.com/MeerKAT-CAM-Public-Docs

[3] L van den Heever et al, “MeerKAT CAM Requirement
Specification, Rev 2”, SKA SA, August 2013,
http://tinyurl.com/MeerKAT-CAM-Public-Docs

[4] KATCP Guidelines
http://pythonhosted.org/katcp/_downloads/NRF-KAT7-6.0-
IFCE-002-Rev5.pdf

[5] KATCP Python Library http://pythonhosted.org/katcp
[6] Genshi templating Python library

http://genshi.edgewall.org/
[7] PostgreSQL open-source database

http://en.wikipedia.org/wiki/PostgreSQL
[8] Proxmox server virtualisation management solution

http://pve.proxmox.com
[9] Fabric application deployment Python library

http://docs.fabfile.org/
[10] Ubuntu LTS Long Term Support release

https://wiki.ubuntu.com/LTS
[11] IRC Internet Relay Chat

http://en.wikipedia.org/wiki/Internet_Relay_Chat
[12] Mantis issue tracker

http://www.mantisbt.org/
[13] Subversion

http://subversion.apache.org/
[14] Jenkins continuous integration server

http://jenkins-ci.org/
[15] RST reStructuredText Markup Specification

http://docutils.sourceforge.net/rst.html
[16] Sphinx Python documentation generator

http://sphinx-doc.org/
[17] N. Marais, “Virtualization and Deployment Management

for the KAT-7 / MeerKAT Control and Monitoring
System”, THCOBA06, these proceedings.

[18] C. de Villiers, “MeerKAT Poster and Demo”, TUPPC023,
these proceedings.

MOCOAAB06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

22C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Status Reports

