
THE NEW MULTICORE REAL-TIME CONTROL SYSTEM OF THE RFX-
MOD EXPERIMENT

G. Manduchi, A. Luchetta, C. Taliercio, Consorzio RFX, Padova ITALY

Abstract
The real-time control system of RFX-mod nuclear

fusion experiment has been in operation since 2004 to
control the plasma position and the
MagnetoHydroDinamic (MHD) modes. Over time new
and more computing demanding control algorithms have
been developed and the system has been pushed to its
limits. Therefore a complete re-design was carried out in
2012. The new system adopts radically different solutions
in Hardware, Operating System and Software
management. The VME PowerPc CPUs communicating
over Ethernet used in the former system have been
replaced by a single multicore server. The VxWorks
Operating System, previously used in the VME CPUs has
now been replaced by Linux MRG that proved to behave
very well in real-time applications. The previous
framework for control and communication has been
replaced by MARTe, a modern framework for real-time
control gaining interest in the fusion community.

INTRODUCTION
Recent nuclear fusion experiments use digital real-time

control to improve the quality of the plasma confinement.
Plasma control is carried out by a combination of applied
toroidal and poloidal magnetic fields. In addition, a
vertical field is required to avoid that the plasma moves
outwards and to shape the plasma column, and radial field
components are used for the control of the plasma
Magneto Hydrodinamic (MHD) instabilities. The
magnetic field generated by coils driven by the control
system extends the corrective action performed by the
conducting shell surrounding the plasma container.
Plasma instabilities, in fact, generate counterbalancing
currents inside the shell. If on the one side this effect is
immediate, and therefore much faster than what could be
done by a digital control system, on the other one the
corrective action soon terminates, due to the finite
resistance of the shell and penetration time of the
magnetic field. In practice, the shell alone is not able to
fully compensate plasma instabilities which would soon
lead to an increased interaction between the plasma and
the container wall (and a consequent abrupt interruption
of the discharge.

The actuators for the control system are the coils
generating the corrective magnetic fields which can be
grouped in:
 Toroidal coils generating the toroidal field

component, i.e. along the torus;
 Field Shaping coils, generating a vertical field

component;
 Saddle coils, located around the plasma container

and generating a radial field

Even if magnetic control represents the most important
part of the required actions, other actuators may be
defined in fusion devices such as gas puffing for
controlling the density of the plasma or additional heating
to produce localized interaction with the plasma and to
prevent disruptions.

The RFX-mod experiment[1] has 12 toroidal coils, 8
pairs of field shaping coils (connected in series) and 192
saddle coils, fully covering the torus in a 48x4 array,
corresponding to 212 output signals generated by the
control system. Toroidal and field shaping coils are used
for axisymmetric control, that is, for generating corrective
fields which are the same along the poloidal direction and
therefore correcting global parameters such as the
displacement of the plasma column. The saddle coils are
used to provide localized corrections in order to control
MHD instabilities. The input signals of the control system
are derived from a set of electromagnetic probes located
in several positions around the torus. In particular,
corresponding to every saddle coil position, the radial and
toroidal component of the electromagnetic field are
acquired as well as the actual value of the current flowing
in the coil. It is worth noting that the physical quantities
used for control computation, such plasma position and
current, are not directly derived by measurements, but
they are derived by pre-processing the signals acquired by
electromagnetic probes. The control system of RFX-mod
acquires 192x3 signals taken at the position of the saddle
coil actuators and another set of 128 signals coming from
a variety of electromagnetic probes located in different
places.

In addition to the number of input and output signals,
another important factor for the characterization of a
control system is the maximum allowable latency. As
stated before, the first reaction to plasma instability is
provided by the conducting shell around the torus
controlling in this way those phenomena which are too
fast to be handled by a control system. The shell
counterbalancing action, however, terminates after a few
tens of microseconds, and the intervention of the control
system is then needed. For this reason the maximum
latency of the control system is in the range 50-100µs for
the fastest phenomena, such as vertical instabilities. Other
physical quantities have a slower dynamics, especially in
large devices, requiring a minimum latency of 1-10 ms.

Two other important factors must be considered in the
definition of the architecture of digital control systems for
fusion devices: determinism in response time and
reliability. Both factors may heavily affect the
development cost, but, luckily, they are not as stringent as
they might be in other critical applications such as space
missions.

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOBAB03

Feedback Systems

ISBN 978-3-95450-139-7

1493 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

As for deterministic timeliness, it is to be noted that
control systems in fusion devices are typically used for
feedback control. An occasional miss in time deadline
produces therefore a missed update of the output
reference for one cycle. Provided that the used control
algorithm has a stability margin large enough, this event
does not affect control in practice.

As for reliability, the typical approach in the
implementation of fusion research devices is to define a
separate interlock system for handling all those events
which may affect the integrity of the machine, including
control system failures. The interlock system is much
simpler than the control system and therefore full
reliability can be guaranteed for the interlock system.
Providing full reliability in the control system would
complicate quite a lot its implementation and
consequently increase its cost. As an example, ITER, the
larges fusion device currently under construction, defined
three separate protection tiers [2]: Safety, Interlock and
Control. The safety system ensures the most critical
protection, involving nuclear risk management and
personnel protection. The interlock system is involved in
all those events which may affect the integrity of the
machine, and its failure represents an event to be handled
by the safety system. The control system is responsible of
the complex management of the machine operation and
its failure represents an event handled by the interlock
system.

MIGRATION FROM THE PREVIOUS
RFX-MOD CONTROL ARCHITECTURE

The first digital control providing both axisymmetric

and MHD controls was implemented at RFX-mod in 2004
and consisted in a network of 7 VME chassis, each
hosting a Motorola MVME 5500 single board computer
and Analog to Digital (ADC) or Digital to Analog (DAC)
converters [3]. Some chassis carried out data acquisition
and pre-elaboration, while the others provided the
computation of the control algorithms and the generation
of the output reference waveforms for the power supply
system feeding the actuator coils. Communication among
the system components was carried out by an insulated
1Gbit/s Ethernet segment, and the single board computers
were running the VxWorks Operating System (OS).

Some design choices made in that system proves
successful during the system lifetime, in particular:
 The use of a general purpose solution (Ethernet)

for communication in place of more specialized
ones, such as reflective memories, allowed an easy
update of the system in 2006 by replacing the
former 100Mbit/s Ethernet with 1Gbit/s Ethernet;

 The definition of a modular and distributed
architecture spreading the computational load
among different machines. New controls have been
easily integrated during the system lifetime by
adding more nodes in the network.

Other design choices proved right but information
technology provides nowadays better solutions. For
example, the use of VxWorks represented a mandatory
choice because at that time Linux could not be considered
a real-time OS. In recent years, however, the Linux kernel
has been greatly improved in terms of latency by making
the kernel core pre-emptible, and recent extensions
provide a real-time performance similar to that of
VxWorks [4].

During the system lifetime, new and more complex
control algorithms have been integrated, and the
performance of the control system increased until hitting
its intrinsic limits, in particular computing power and
latency.

In 2012 the system was replaced by a new one which, if
on the one side it retains the modular and distributed
nature of the old system, on the other one represents a
radical change both in hardware and software [5].

The network of VME single board computers has now
been replaced by a single multicore Linux server by
mapping the functions carried out by the single board
computers onto the cores of the server. Multicore
processors represent nowadays a widespread solution not
only in servers but also in laptops and even in
smartphones. Increasing the number of replicated cored
into processors does not always imply a proportional
increase in performance, as performance depends also on
the degree of parallelization in the used algorithms. In our
case, however, control was already partitioned among
different communicating components and mapping the
previous system into the new one has been a
straightforward task by assigning the tasks carried out by
every former VME single board computer to the cores of
the server in a one-to-one relationship. 11 out of 12 cores
available in the server (HP ProLiant DL 370G6) have
been used and they have partitioned in three sets: pre-
processing, control and output generation (Fig. 1). The
four cores user for pre-processing supervise data
acquisition for the different sets of signals and carry out
the required pre-processing in order to generate the
physical quantities which are then used in control. Data
can be acquired in two ways:
 Direct data acquisition via PCIe-based bus

extenders. In this case the ADCs are mounted on
separate chassis (cPCI, PXI or ATCA) which are
connected to the server via a bus extender, using
PCIe for communication. In this configuration the
device registers are mapped into the I/O address
space of the server and high speed in data transfer
can be achieved. It is worth noting that large data
throughputs are not required in control system. For
example, acquiring 100 ADC channels using 16 bit
for the conversion at a rate of 10 kSample/s
implies a data throughput of 2 MB/s which
represents an almost negligible amount when
compared to the data throughput normally
achieved in disk accesses.

 Network data acquisition. This solution has been
temporarily adopted in RFX-mod due to budget

FRCOBAB03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1494C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Feedback Systems

limitations which forced the reuse of the VME
ADCs. In this case raw data are acquired by the
VME controller CPU and sent via UDP packets.
The replacement of the VME ADCs with new
ATCA ADCs, directly connected to the server via a
bus extender, is foreseen in 2014, thus removing
the latency due to network communication and IP
stack management.

Three other cores are used to carry out the thee control

algorithms for the generation of the reference waveforms
to the power supply units of the saddle, field-shaping and
toroidal coils, taking pre-processed data from shared
memory and producing the reference values. The
remaining set supervises DAC generation, and it would
not have been required if the DAC device drivers
(National Instrument PXI NI6723 PXI) had supported
DMA data transfer. Unluckily, this is not the case and the
time spent for performing direct I/O transfer to the DAC
devices would have reduced the time available for control
computation if data generation were carried out by the
same cores performing MHD, toroidal and axisymmetric
control.

Communication among cores is carried out via shared
memory. As all the involved threads belong to the same
process, they share the same address space and therefore
communication does not require the use of specific
system calls for shared memory management. POSIX
semaphores and mutexes have been used to protect data
integrity and to achieve thread synchronization.

Figure 1. Real-time control threads organization

SYSTEM CONFIGURATION

A fixed core assignment has been possible thanks to the

fact that there are enough available cores to assign a
single control thread to cores. 11 out of 12 cores are
dedicated to the control system and the left core is used

for the normal system activity. Fixed core assignment is
carried out by:
 Using the ISOLCPU Linux boot parameter to

instruct the Linux scheduler to use only the core
not used in control for task assignment;

 Explicitly assigning threads to cores in the
framework code using the cpu_setaffinity() system
call. In this case the created thread is assigned to
the core specified in the passed mask regardless the
ISOLCPU definition.

The combined usage of ISOLCPU and
sched_setaffinity() removes most jitter in latency due to
the non determinism in thread core assignment which
would happen if the Linux scheduler were allowed to use
all the cores for thread execution. A static assignment of
cores to thread is mandatory to reduce jitter in system
latency. However, assigning a single thread to each core
represents somehow a fortunate situation where the
number of available cores is enough. For larger systems
the number of threads may exceed the number of
available cores and in this case it is necessary to handle
the co-existence of multiple threads in the same core. Two
approaches are possible:
 Define the processor mask passed to

sched_setaffinity() so that more than one thread is
assigned to a given core. In this case freedom of
the Linux scheduler is still limited, as it can assign
only a given core to each threads, but the scheduler
will now handle the required context switches
among the threads assigned to the core;

 Enable processor hyperthreading in the BIOS
configuration in order to double the number of
cores seen by the OS. When hyperthreading is
enabled, the system takes advantage of available
replicated components in cores, but it does not
carry out a full duplication of the hardware
resources which are contended by different threads,
even if running on different virtual cores.

It is not easy to state in principle which solution is
preferable, so we carried out a test where only half of the
available physical cores were used. It turned out that
hyperthreading presents a significantly degraded latency
in respect of the other, probably due to a less flexible
assignment of the contended resources.

LINUX IN REAL-TIME APPLICATIONS

At the time the original real-time control system has

been built, the usage of VxWorks as real-time OS for
critical applications was almost mandatory, even if since
then Linux was rapidly increasing its user base. Things
changed in the following years with the advent of version
2.6 introducing kernel preemption and therefore
improving real-time responsiveness. A further step in this
direction is represented by the PREEMPT_RT patch of
the Linux MRG distribution [6]. Linux MRG provides
preemptible critical sections, priority inheritance for

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOBAB03

Feedback Systems

ISBN 978-3-95450-139-7

1495 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

kernel semaphores and preemtible interrupt handlers.
While in kernel 2.6 the mechanism used to protect critical
section in the kernel are implemented as spinlocks, in
PREEMPT_RT it is implemented by a new version of
semaphore (called rt-semaphore) whose implementation
is efficient if the underlying architecture supports
compare & exchange instruction. Priority inheritance
provides protection against priority inversion thus
reducing the likelihood of delays introduced by lower
priority tasks. Preemptible interrupt handlers are
implemented by leaving the minimum amount of core in
the Interrupt Service Routine (ISR) and moving the rest
of the required driver actions into real-time threads which
are managed by the Linux scheduler based on their
priority. As a result, the real-time responsiveness of Linux
MRG is improved for important (i.e. with high priority)
tasks and the jitter in latency is reduced.

SOFTWARE FRAMEWORK

The radical change in architecture carried out in the

new system includes also the software framework. Instead
of refactoring the previous software framework, we
decided to adopt a solution shared with other laboratories
and we selected the MARTe framework, initially
developed at JET and currently adopted in different
fusion laboratories. MARTe provides the following
features:
 It is oriented towards multicore architectures

defining a number of threads within the context of
a single Linux process. Every thread is
configurable including its core assignment

 It is modular: its configuration is defined in a text
file which is parsed at system startup. The
configuration file defines, among others, the
number of threads, their core assignment and the
operations carried out by every thread. A change in
configuration requires only a change in the
configuration file, not in the code.

 It is agnostic on the kind of computation being
carried out. What the framework provides is the
required mechanisms for data flow and the
supervision of the running threads. Actual
computation is deferred to user-provided
components called Generic Application Modules
(GAMs). These modules are implemented as C++
classes inheriting from a generic GAM superclass
which defines the standard interface of MARTe
components.

The configuration defined in the configuration file can be
easily replicated in different systems. This feature turned
out very useful for simulating the control system by
replacing in the configuration the components performing
data I/O with others reading and writing offline data. To
use the MARTe framework it is therefore necessary to
develop the system-specific components. However, the
developer in now only concerned on his/her component,

exchanging data with the rest of the system via a simple
interface, thus hiding the complexity of the underlying
system.

REFERENCES
[1] R. Piovan et al. “RFX machine and power supply

improvements for RFP advanced studies”, Fusion
Engineering and Design vol 56-57, pp. 819-824
October 2001.

[2] J.B. Lister, J.W. Farthing, M. Greenwald, I.
Yonekawa “The status of the ITER CODAC
conceptual design” , Fusion Engineering and Design
vol 83, pp. 164-169 April 2008.

[3] M. Cavinato, G. Manduchi, A. Luchetta, C. Taliercio
“General Purpose Framework for Real Time Control
in Nuclear Fusion experiments” IEEE Transactions
on Nuclear Science vol 53, pp. 1002-1007 June 2006.

[4] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro,
A. Soppelsa, C. Taliercio “Performance Comparison
of VxWorks, Linux, RTAI, and Xenomai in a Hard
Real-Time Application” IEEE Transactions on
Nuclear Science vol 55, pp. 435-438, February 2008.

[5] G. Manduchi, A. Barbalace, A. Luchetta, A.
Soppelsa, C. Taliercio, E. Zampiva “Upgrade of the
RFX-mod real time control system” Fusion
Engineering and Design, Vol. 87, pp. 1907-1911,
December 2012.

[6] CONFIG PREEMPT RT Patch Home Page,
 https://rt.wiki.kernel.org/index.php/CONFIG_PREE

MPT_RT_Patch

FRCOBAB03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1496C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Feedback Systems

