
KARABO: AN INTEGRATED SOFTWARE FRAMEWORK COMBINING
CONTROL, DATA MANAGEMENT, AND SCIENTIFIC COMPUTING

TASKS

B. C. Heisen*, D. Boukhelef, S. Esenov, S. Hauf, I. Kozlova, L. Maia, A. Parenti, J. Szuba, K.
Weger, K. Wrona, C. Youngman, European XFEL GmbH, 22761 Hamburg, Germany

Abstract

The expected very high data rates and volumes at the
European XFEL [1] demand an efficient concurrent
approach of performing experiments. Data analysis must
already start whilst data is still being acquired and initial
analysis results must immediately be usable to re-adjust
the current experiment setup.

We have developed a software framework, called
Karabo, which allows such a tight integration of these
tasks (see Fig. 1). Karabo is in essence a pluggable,
distributed application management system. All Karabo
applications (called devices) have a standardized interface
for self-description/configuration, program-flow
organization (state machine), logging and communication.
Central services exist for user management, access
control, data logging, configuration management etc. The
design provides a very scalable but still maintainable
system that at the same time can act as a fully-fledged
control or a highly parallel distributed scientific workflow
system. It allows simple integration and adaption to
changing control requirements and the addition of new
scientific analysis algorithms, making them automatically
and immediately available to experimentalists.

Figure 1: A homogenous software framework.

TECHNOLOGY
Karabo is written in C++ making extensive use of

template programming mechanisms and the boost [2]
libraries. Karabo and all its components are fully
available to the Python programming language. This is
achieved using a mixture of language binding
mechanisms (boost-python) and complete re-writes of
selected components in pure Python. Karabo runs on
current Linux operating systems (e.g. Ubuntu, Scientific
Linux, SUSE, Fedora) and under Mac OS X and is
distributed as a software bundle (binary or sources)
including all necessary dependencies.

ESSENTIAL COMPONENTS
Devices and Device-Servers

Similar to existing successful control systems such as
Tango [3] or DOOCS [4], the basic building blocks of
Karabo are controllable objects (devices) managed by a
device-server. A device-server is a generic application,
which is capable of loading device-class libraries at
runtime (plugin-functionality). Device-servers and
devices are identified by unique name strings and
communicate via a central message broker.

Upon an initialization request, devices are constructed
and initially configured using factory mechanisms. After
instantiation the device-server keeps devices running in
an event driven way. Events pertaining to a device are
given by its properties and commands. Properties have
“get/set” and commands have “execute” functionality.
Events can optionally be integrated into a finite-state-
machine, which predefines possible callback-sequences
through a device internal state transition table. The base-
device interface provides functionality ensuring a
standardized self-description of all available properties
and commands and their associated state-machine logic.

A large set of meta-information (called attributes) is
available to detail the description of properties and
commands. Typical attributes for example are: default
value, physical unit, displayed label, value-bounds, alarm
and warn thresholds, access mode (initially configurable,
reconfigurable, read-only), etc.

Device-Client
Device-client objects can remotely control devices and

device-servers. Available functionality is
“set/get/monitor” on device properties and “execute” on
device commands. Devices can remotely be instantiated
on any device-server equipped with the respective device-
class plugin. Device and device-server instances may also
be remotely terminated. All functionality comes in a
“wait” (synchronous, return value provided) and in a “no-
wait” (asynchronous) version allowing for sequential or
parallel control, respectively. As Karabo’s
communication is inherently event-driven, any
synchronous interface makes use of local caching
approaches and does not poll the remote component.

The device-client also provides functionality for
exploring the distributed system topology (i.e. which
device-servers run on what hosts with what device-class
plugins available, which devices are running on what

 __
*burkhard.heisen@xfel.eu

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB02

Experiment Control

ISBN 978-3-95450-139-7

1465 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

device-server etc.). The self-description of each device is
available to the device-client and utilized for inquiring
about all available properties and commands.

Device-client instances run as engines behind all user
interfaces of Karabo, they power the command line (CLI)
as well as the graphical (GUI) interface. Moreover, each
device optionally can run an internal instance of a device-
client, enabling devices to sub-control other devices. In
this way it is possible to introduce logical devices that can
abstract several lower-level devices into one reduced
interface (device-composition).

User Interfaces (CLI and GUI)

Figure 2: Multi-purpose GUI. Each panel may be
undocked and made full screen on different monitors
(orange circles).

Being a distributed system, the user can interact with
Karabo from any connected computer. On the non-
graphical side, an IPython [5] based command-line
interpreter running the device-client is available. Any
control commands can be typed and are directly executed.
The interactive session is aided by sophisticated auto-
completion on currently available device-servers, devices,
their properties and commands, taking into account the
restrictions of the individual device’s state-machines. Any
interactively given command can as well be written into a
regular IPython script and be executed as a macro. This
enables the user to write complex command sequence
scripts, as for example those needed for slowly ramping
up voltages or scanning physical properties.

Like the CLI the GUI is a multi-purpose tool providing
all functionality needed to set-up and interact with the
Karabo system. Seven dock-able main panels form the
basic layout (see Fig. 2):

1. Navigation – Real-time (online) view of the
system (device-servers, plugins, devices, etc.)

2. Project – Offline configuration of projects (e.g.
compute workflows, initial configurations, etc.)

3. Notification – Informs about warnings, alarms,
end-of-runs, etc.

4. Custom – PowerPoint like page allowing to build
expert panels from a mixture of online (e.g.
device properties/commands) and layout widgets
(textboxes, lines, shapes, etc.)

5. Logging – Accumulated logging information of
all currently running devices

6. Configuration – Auto-generated panel (utilizing
the device’s self-description) giving access to
properties/commands of the currently clicked
device

7. Documentation – Integrated internet-browser
allowing wiki-page editing for device
documentation and also bug-reporting

The GUI is implemented in Python using the PyQt [6]
framework. GUIs do not directly communicate with the
broker, but connect via TCP to a GUI-Server device,
which forwards the communication to the broker. This
architecture facilitates a server side pre-processing of data
reducing each client’s CPU time (as done once for all
clients). Whilst running, the GUI always tracks which
properties are currently visible and reports this
information to the GUI-Server, which then only sends
data that is currently needed (visible), largely reducing the
network load.

Message Broker
The message broker is a central service to which all

Karabo components (device-servers, devices, clients)
must connect for message exchange (Fig. 3). The message
broker must be started as the first component in a Karabo
installation and forms a single-point of failure.
Conceptually, the broker must at least support
publish/subscribe and message selection functionality.
Karabo currently uses OpenMQ [7], which is an
implementation of the JMS specification and also runs as
integral part of the Glassfish [8] application server.

Figure 3: Karabo’s basic architecture and components.
Gray rectangles indicate device-servers, circles show
devices of different category (green: control, yellow:
DAQ, blue: DM, red: SC). Dashed lines indicate
message-based control whilst solid ones indicate direct
point-to-point communication. For simplicity device-
server – broker communication lines are not shown.

SELECTED FEATURES
The Hash Object

The hash is the core data structure in the Karabo
software framework. It is as fundamental to Karabo as the

FRCOAAB02 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1466C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

inbuilt dict type is for the Python language. Like the
Python dict the hash is a fully recursive key-value
associative container (keys are strings and unique, values
can be of any type). In addition, it preserves insertion
order, whilst still being optimized for random key-based
lookup. Different iterators are available for each use case.
Individual keys within the hash can be optionally
annotated with a set of attributes. The hash can
seamlessly be serialized to/from e.g. XML, Binary,
HDF5, JMS-Message formats and is used in the
implementation of various Karabo backend functionality.

Signals and Slots
Signals and slots is a language construct originally

introduced in Qt [9] for communication between objects,
which makes it easy to implement the Observer
pattern [10] while avoiding boilerplate code. We have re-
implemented this communication pattern in Karabo with
some substantial enhancements.

a) Object communication cannot only happen
within one application (as in Qt) but is possible
across applications and across connected hosts.

b) No auxiliary tool (like Qt’s Meta-Object-
Compiler) is needed, the implementation uses
only regular language constructs

c) Signals and slots can be defined anywhere in the
code (e.g. in conditionals) and are immediately
active in runtime.

d) Being part of Karabo, signals and slots are
available under C++ and Python and can be
called across languages

As in Qt, slots are regular functions using the
language’s native data types as arguments. Signal/slot
communication is type safe, i.e. a signal must match the
signature of the receiving slot (in fact a slot may have a
shorter signature than the signal it receives because it can
ignore extra arguments).

Karabo’s signal-slot mechanism can be used on top of
any message-oriented middleware that at least supports
publish/subscribe and message selection functionality
(like e.g. JMS).

Most of Karabo’s high-level functionality is based on
the signals and slots mechanism making it a mostly event
driven system. Besides signals and slots, two other
broker-based communication patterns (direct call and
request/response) exist and are used wherever
appropriate.

Scientific Workflow System

Figure 4: Rough sketch of the workflow communication.

Besides functioning as a regular control system, Karabo
at the same time can be used to execute highly
configurable scientific workflows similar to e.g.
Triana [11]. Workflow nodes are regular devices with the
addition of so-called input and output (IO) channels (see
Fig. 4). Any workflow node may have zero or more IO
channels and each IO channel is capable of
reading/writing data of a pre-defined type. Currently,
built-in data types are the Karabo hash as well as an
image and a raw byte container (e.g. allowing to send
files of any format). If needed, users can register custom
data types to the Karabo serialization factory, which are
immediately usable without re-compilation (plugin
technology). Input and output channels can be connected
in an N-to-N fashion and use the device’s unique names
in combination of the IO channel’s name for addressing.
Data is directly exchanged between workflow nodes
(point-to-point) - the central broker is not involved. Nodes
running in the same device-server exchange data
transparently via memory-pointers in contrast to using
TCP if running in different device-servers. Input channels
can be configured to either receive a copy of any data sent
by the connected output or to share the data amongst all
other connected input (fan-out scenario for parallel
computing on data chunks). Furthermore, a minimum
number of data tokens to be accumulated before the
internal compute method is triggered can be configured.
This allows the integration of algorithms that cannot work
in a streaming fashion but rather need to see all or larger
parts of data for processing. Technically, input devices
report their availability to the connected output devices in
an event-driven way, allowing for features such as
automatic data-flow adjustment and load balancing. A
special “end-of-stream” token allows the design of
circular workflow topologies and thus the implementation
of global iteration cycles. IO operations are always
performed asynchronously and transparently. In other
words: whilst workflow nodes are computing on data, the
next data is already sent in the background. In case data
could be sent faster than being received, the sending
channel can be configured to either wait for the input
channel, queue or drop the data or just throw an
exception. By default, output channels are waiting for
input channel availability ensuring safe flow of data
without risking any memory overruns. In this mode the
whole workflow will automatically adapt its speed to the
maximum possible data throughput.

As workflow nodes are devices, they can be written in
C++ or Python and used interchangeably within the same
workflow. From a device-developers perspective, coding
a new workflow node firstly needs the definition of input
and output channel plus any other auxiliary parameters
(e.g. thresholds, algorithm types, etc.) using the device’s
self-description interface. Secondly, the processing
algorithm must be implemented by overriding the
compute function that will be called by Karabo. When
this function is called, it ensures that all IO channels are
prepared for data reading and writing.

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB02

Experiment Control

ISBN 978-3-95450-139-7

1467 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Existing modules can be assembled into workflows
either graphically (using Karabo GUI’s central custom
widget to drag and drop modules and connections) or via
an XML file.

User Centricity and Access Control
Prior to using any control interface (be it CLI or GUI)

users must log in with username, password and
authentication provider (e.g. Kerberos [12]). This
information gets automatically extended with data
describing the broker (host, port, topic) and the local
machine before sending it as a SSL encoded SOAP
message to a web-based authentication service. The
authentication service is connected to a central database,
which computes the current access levels for the
requesting user from the context of the provided
information. Following properties are taken into account:
i) users role ii) the Karabo sub-system used (broker
information) iii) the location (IP address) of the user and
iv) the current time. The web-service subsequently sends
back a global access level and a list of device instance
specific exceptions. Currently, five different access levels
are used: observer, user, operator, expert, and admin.
Properties and commands of devices on the other hand
can be restricted to certain access levels using the
“requiredAccessLevel” attribute. As all property and
command descriptions are available to the user interfaces,
client-side validation and adapted visualization (restricted
auto-completion in CLI, invisible widgets in GUI) taking
into account the current user’s access levels is performed.
In future, concepts like locking (single user device access)
can be implemented by sending the user id and access
level as part of any message to the devices (see Fig. 5 for
an overview).

Figure 5: Illustration of the access control system.

CURRENT STATUS AND OUTLOOK
The first version of Karabo (1.0) was released for a
restricted community of users (mainly European XFEL
associated) in August 2013. The release included the
Karabo backbone and some example devices. Currently,
many other devices are being implemented for the new
Karabo framework. The development focuses on control
devices (e.g. motors, cameras, pump, valves, etc.),
compute devices (e.g. calibration pipeline, CrystFEL [13]
pipeline, parallel EMC [14], etc.) and also on integration

devices to other control system such as DOOCS. Many
more features are conceptually clear and are scheduled for
future releases such as: Inter-device alarm handling,
improved plotting of archived data, integration of routine
image processing workflow modules, device-client
availability in JAVA, etc.

CONCLUSIONS
Karabo is a software framework written from scratch

and intended to fit the increased requirements regarding
data volumes and rates of modern photon science
facilities such as free electron X-ray lasers. By design it
integrates control, data acquisition, data management and
scientific computing tasks into one homogeneous
software framework. It relies on modern programming
language technologies and high quality third-party
software packages and aims to provide users as well as
developers a clean interface and intuitive access to data,
hardware and computing resources.

REFERENCES
[1] M.Altarelli et al., XFEL: The European X-ray Free-

Electron Laser technical design report, DESY XFEL
Project Group (2006)

[2] http://www.boost.org. Boost C++ Libraries website
[3] http://www.tango-controls.org. The TANGO official

website.
[4] http://doocs.desy.de. DOOCS website
[5] http://ipython.org. IPython website
[6] http://www.riverbankcomputing.com/software/pyqt

PyQt website
[7] https://mq.java.net. OpenMQ website
[8] https://glassfish.java.net GlassFish website
[9] http://qt-project.org The Qt website
[10] Gamma, Helm, Johnson, Vlissides, “Design

Patterns”, Addison-Wesley, 1995.
[11] http://www.trianacode.org. Triana Website
[12] http://web.mit.edu/Kerberos Kerberos Website
[13] T. A. White, R. A. Kirian, A. V. Martin, A. Aquila,

K. Nass, A. Barty and H. N. Chapman. "CrystFEL: a
software suite for snapshot serial crystallography". J.
Appl. Cryst. 45 (2012), p335–341.

[14] N.-T. D. Loh and V. Elser, "Reconstruction algorithm
for single-particle diffraction imaging experiments",
Phys. Rev. E 80, 026705 (2009).

FRCOAAB02 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1468C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

