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Abstract 

The expected very high data rates and volumes at the 
European XFEL [1] demand an efficient concurrent 
approach of performing experiments. Data analysis must 
already start whilst data is still being acquired and initial 
analysis results must immediately be usable to re-adjust 
the current experiment setup.  

We have developed a software framework, called 
Karabo, which allows such a tight integration of these 
tasks (see Fig. 1). Karabo is in essence a pluggable, 
distributed application management system. All Karabo 
applications (called devices) have a standardized interface 
for self-description/configuration, program-flow 
organization (state machine), logging and communication. 
Central services exist for user management, access 
control, data logging, configuration management etc. The 
design provides a very scalable but still maintainable 
system that at the same time can act as a fully-fledged 
control or a highly parallel distributed scientific workflow 
system. It allows simple integration and adaption to 
changing control requirements and the addition of new 
scientific analysis algorithms, making them automatically 
and immediately available to experimentalists. 

 
Figure 1: A homogenous software framework. 

TECHNOLOGY 
Karabo is written in C++ making extensive use of 

template programming mechanisms and the boost [2] 
libraries. Karabo and all its components are fully 
available to the Python programming language. This is 
achieved using a mixture of language binding 
mechanisms (boost-python) and complete re-writes of 
selected components in pure Python. Karabo runs on 
current Linux operating systems (e.g. Ubuntu, Scientific 
Linux, SUSE, Fedora) and under Mac OS X and is 
distributed as a software bundle (binary or sources) 
including all necessary dependencies. 

ESSENTIAL COMPONENTS 
Devices and Device-Servers 

Similar to existing successful control systems such as 
Tango [3] or DOOCS [4], the basic building blocks of 
Karabo are controllable objects (devices) managed by a 
device-server. A device-server is a generic application, 
which is capable of loading device-class libraries at 
runtime (plugin-functionality). Device-servers and 
devices are identified by unique name strings and 
communicate via a central message broker.  

Upon an initialization request, devices are constructed 
and initially configured using factory mechanisms. After 
instantiation the device-server keeps devices running in 
an event driven way. Events pertaining to a device are 
given by its properties and commands. Properties have 
“get/set” and commands have “execute” functionality. 
Events can optionally be integrated into a finite-state-
machine, which predefines possible callback-sequences 
through a device internal state transition table. The base-
device interface provides functionality ensuring a 
standardized self-description of all available properties 
and commands and their associated state-machine logic.  

A large set of meta-information (called attributes) is 
available to detail the description of properties and 
commands. Typical attributes for example are: default 
value, physical unit, displayed label, value-bounds, alarm 
and warn thresholds, access mode (initially configurable, 
reconfigurable, read-only), etc. 

Device-Client 
Device-client objects can remotely control devices and 

device-servers. Available functionality is 
“set/get/monitor” on device properties and “execute” on 
device commands. Devices can remotely be instantiated 
on any device-server equipped with the respective device-
class plugin. Device and device-server instances may also 
be remotely terminated. All functionality comes in a 
“wait” (synchronous, return value provided) and in a “no-
wait” (asynchronous) version allowing for sequential or 
parallel control, respectively. As Karabo’s 
communication is inherently event-driven, any 
synchronous interface makes use of local caching 
approaches and does not poll the remote component. 

The device-client also provides functionality for 
exploring the distributed system topology (i.e. which 
device-servers run on what hosts with what device-class 
plugins available, which devices are running on what 
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device-server etc.). The self-description of each device is 
available to the device-client and utilized for inquiring 
about all available properties and commands.  

Device-client instances run as engines behind all user 
interfaces of Karabo, they power the command line (CLI) 
as well as the graphical (GUI) interface. Moreover, each 
device optionally can run an internal instance of a device-
client, enabling devices to sub-control other devices. In 
this way it is possible to introduce logical devices that can 
abstract several lower-level devices into one reduced 
interface (device-composition).  

User Interfaces (CLI and GUI)  

 
Figure 2: Multi-purpose GUI. Each panel may be 
undocked and made full screen on different monitors 
(orange circles). 

Being a distributed system, the user can interact with 
Karabo from any connected computer. On the non-
graphical side, an IPython [5] based command-line 
interpreter running the device-client is available. Any 
control commands can be typed and are directly executed. 
The interactive session is aided by sophisticated auto-
completion on currently available device-servers, devices, 
their properties and commands, taking into account the 
restrictions of the individual device’s state-machines. Any 
interactively given command can as well be written into a 
regular IPython script and be executed as a macro. This 
enables the user to write complex command sequence 
scripts, as for example those needed for slowly ramping 
up voltages or scanning physical properties. 

Like the CLI the GUI is a multi-purpose tool providing 
all functionality needed to set-up and interact with the 
Karabo system. Seven dock-able main panels form the 
basic layout (see Fig. 2): 

1. Navigation – Real-time (online) view of the 
system (device-servers, plugins, devices, etc.) 

2. Project – Offline configuration of projects (e.g. 
compute workflows, initial configurations, etc.) 

3. Notification – Informs about warnings, alarms, 
end-of-runs, etc. 

4. Custom – PowerPoint like page allowing to build 
expert panels from a mixture of online (e.g. 
device properties/commands) and layout widgets 
(textboxes, lines, shapes, etc.) 

5. Logging – Accumulated logging information of 
all currently running devices 

6. Configuration – Auto-generated panel (utilizing 
the device’s self-description) giving access to 
properties/commands of the currently clicked 
device 

7. Documentation – Integrated internet-browser 
allowing wiki-page editing for device 
documentation and also bug-reporting 
 

The GUI is implemented in Python using the PyQt [6] 
framework. GUIs do not directly communicate with the 
broker, but connect via TCP to a GUI-Server device, 
which forwards the communication to the broker. This 
architecture facilitates a server side pre-processing of data 
reducing each client’s CPU time (as done once for all 
clients). Whilst running, the GUI always tracks which 
properties are currently visible and reports this 
information to the GUI-Server, which then only sends 
data that is currently needed (visible), largely reducing the 
network load. 

Message Broker 
The message broker is a central service to which all 

Karabo components (device-servers, devices, clients) 
must connect for message exchange (Fig. 3). The message 
broker must be started as the first component in a Karabo 
installation and forms a single-point of failure. 
Conceptually, the broker must at least support 
publish/subscribe and message selection functionality. 
Karabo currently uses OpenMQ [7], which is an 
implementation of the JMS specification and also runs as 
integral part of the Glassfish [8] application server. 

 

 
Figure 3: Karabo’s basic architecture and components. 
Gray rectangles indicate device-servers, circles show 
devices of different category (green: control, yellow: 
DAQ, blue: DM, red: SC). Dashed lines indicate 
message-based control whilst solid ones indicate direct 
point-to-point communication. For simplicity device-
server – broker communication lines are not shown.   

SELECTED FEATURES 
The Hash Object 

The hash is the core data structure in the Karabo 
software framework. It is as fundamental to Karabo as the 
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inbuilt dict type is for the Python language. Like the 
Python dict the hash is a fully recursive key-value 
associative container (keys are strings and unique, values 
can be of any type). In addition, it preserves insertion 
order, whilst still being optimized for random key-based 
lookup. Different iterators are available for each use case. 
Individual keys within the hash can be optionally 
annotated with a set of attributes. The hash can 
seamlessly be serialized to/from e.g. XML, Binary, 
HDF5, JMS-Message formats and is used in the 
implementation of various Karabo backend functionality. 

Signals and Slots 
Signals and slots is a language construct originally 

introduced in Qt [9] for communication between objects, 
which makes it easy to implement the Observer 
pattern [10] while avoiding boilerplate code. We have re-
implemented this communication pattern in Karabo with 
some substantial enhancements. 

a) Object communication cannot only happen 
within one application (as in Qt) but is possible 
across applications and across connected hosts. 

b) No auxiliary tool (like Qt’s Meta-Object-
Compiler) is needed, the implementation uses 
only regular language constructs 

c) Signals and slots can be defined anywhere in the 
code (e.g. in conditionals) and are immediately 
active in runtime. 

d) Being part of Karabo, signals and slots are 
available under C++ and Python and can be 
called across languages 

As in Qt, slots are regular functions using the 
language’s native data types as arguments. Signal/slot 
communication is type safe, i.e. a signal must match the 
signature of the receiving slot (in fact a slot may have a 
shorter signature than the signal it receives because it can 
ignore extra arguments).  

Karabo’s signal-slot mechanism can be used on top of 
any message-oriented middleware that at least supports 
publish/subscribe and message selection functionality 
(like e.g. JMS).   

Most of Karabo’s high-level functionality is based on 
the signals and slots mechanism making it a mostly event 
driven system. Besides signals and slots, two other 
broker-based communication patterns (direct call and 
request/response) exist and are used wherever 
appropriate.  

Scientific Workflow System 

 
Figure 4: Rough sketch of the workflow communication. 

Besides functioning as a regular control system, Karabo 
at the same time can be used to execute highly 
configurable scientific workflows similar to e.g. 
Triana  [11]. Workflow nodes are regular devices with the 
addition of so-called input and output (IO) channels (see 
Fig. 4). Any workflow node may have zero or more IO 
channels and each IO channel is capable of 
reading/writing data of a pre-defined type. Currently, 
built-in data types are the Karabo hash as well as an 
image and a raw byte container (e.g. allowing to send 
files of any format). If needed, users can register custom 
data types to the Karabo serialization factory, which are 
immediately usable without re-compilation (plugin 
technology). Input and output channels can be connected 
in an N-to-N fashion and use the device’s unique names 
in combination of the IO channel’s name for addressing. 
Data is directly exchanged between workflow nodes 
(point-to-point) - the central broker is not involved. Nodes 
running in the same device-server exchange data 
transparently via memory-pointers in contrast to using 
TCP if running in different device-servers. Input channels 
can be configured to either receive a copy of any data sent 
by the connected output or to share the data amongst all 
other connected input (fan-out scenario for parallel 
computing on data chunks). Furthermore, a minimum 
number of data tokens to be accumulated before the 
internal compute method is triggered can be configured. 
This allows the integration of algorithms that cannot work 
in a streaming fashion but rather need to see all or larger 
parts of data for processing. Technically, input devices 
report their availability to the connected output devices in 
an event-driven way, allowing for features such as 
automatic data-flow adjustment and load balancing. A 
special “end-of-stream” token allows the design of 
circular workflow topologies and thus the implementation 
of global iteration cycles. IO operations are always 
performed asynchronously and transparently. In other 
words: whilst workflow nodes are computing on data, the 
next data is already sent in the background. In case data 
could be sent faster than being received, the sending 
channel can be configured to either wait for the input 
channel, queue or drop the data or just throw an 
exception. By default, output channels are waiting for 
input channel availability ensuring safe flow of data 
without risking any memory overruns. In this mode the 
whole workflow will automatically adapt its speed to the 
maximum possible data throughput. 

As workflow nodes are devices, they can be written in 
C++ or Python and used interchangeably within the same 
workflow. From a device-developers perspective, coding 
a new workflow node firstly needs the definition of input 
and output channel plus any other auxiliary parameters 
(e.g. thresholds, algorithm types, etc.) using the device’s 
self-description interface. Secondly, the processing 
algorithm must be implemented by overriding the 
compute function that will be called by Karabo. When 
this function is called, it ensures that all IO channels are 
prepared for data reading and writing. 
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Existing modules can be assembled into workflows 
either graphically (using Karabo GUI’s central custom 
widget to drag and drop modules and connections) or via 
an XML file. 

User Centricity and Access Control 
Prior to using any control interface (be it CLI or GUI) 

users must log in with username, password and 
authentication provider (e.g. Kerberos [12]). This 
information gets automatically extended with data 
describing the broker (host, port, topic) and the local 
machine before sending it as a SSL encoded SOAP 
message to a web-based authentication service. The 
authentication service is connected to a central database, 
which computes the current access levels for the 
requesting user from the context of the provided 
information. Following properties are taken into account: 
i) users role ii) the Karabo sub-system used (broker 
information) iii) the location (IP address) of the user and 
iv) the current time. The web-service subsequently sends 
back a global access level and a list of device instance 
specific exceptions. Currently, five different access levels 
are used: observer, user, operator, expert, and admin. 
Properties and commands of devices on the other hand 
can be restricted to certain access levels using the 
“requiredAccessLevel” attribute. As all property and 
command descriptions are available to the user interfaces, 
client-side validation and adapted visualization (restricted 
auto-completion in CLI, invisible widgets in GUI) taking 
into account the current user’s access levels is performed. 
In future, concepts like locking (single user device access) 
can be implemented by sending the user id and access 
level as part of any message to the devices (see Fig. 5 for 
an overview). 

  

 
Figure 5: Illustration of the access control system. 

CURRENT STATUS AND OUTLOOK 
The first version of Karabo (1.0) was released for a 
restricted community of users (mainly European XFEL 
associated) in August 2013. The release included the 
Karabo backbone and some example devices. Currently, 
many other devices are being implemented for the new 
Karabo framework. The development focuses on control 
devices (e.g. motors, cameras, pump, valves, etc.), 
compute devices (e.g. calibration pipeline, CrystFEL [13] 
pipeline, parallel EMC [14], etc.) and also on integration 

devices to other control system such as DOOCS. Many 
more features are conceptually clear and are scheduled for 
future releases such as: Inter-device alarm handling, 
improved plotting of archived data, integration of routine 
image processing workflow modules, device-client 
availability in JAVA, etc.     

CONCLUSIONS 
Karabo is a software framework written from scratch 

and intended to fit the increased requirements regarding 
data volumes and rates of modern photon science 
facilities such as free electron X-ray lasers. By design it 
integrates control, data acquisition, data management and 
scientific computing tasks into one homogeneous 
software framework. It relies on modern programming 
language technologies and high quality third-party 
software packages and aims to provide users as well as 
developers a clean interface and intuitive access to data, 
hardware and computing resources. 
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