
SYNOPTIC DISPLAYS AND RAPID VISUAL APPLICATION
DEVELOPMENT*

B. Frak, K. Brown, T. D’Ottavio, M. Harvey S. Nemesure, Brookhaven National Laboratory,
Upton, U.S.A.

Abstract
For a number of years there has been an increasing

desire to adopt a synoptic display suite within BNL
accelerator community. Initial interest in the precursors to
the modern display suites like MEDM quickly fizzled out
as our users found them aesthetically unappealing and
cumbersome to use. Subsequent attempts to adopt Control
System Studio (CSS) [1] also fell short when work on the
abstraction bridge between CSS and our control system
stalled and was eventually abandoned. Most recently, we
tested the open source version of a Synoptic Display
developed at Fermilab [2]. It, like its previously evaluated
predecessors, also seemed rough around the edges,
however a few implementation details made it more
appealing than every single previously mentioned solution
and after a brief evaluation we settled on Synoptic as our
display suite of choice. This paper describes this adoption
process and goes into details on several key changes and
improvements made to the original implementation – a
few of which made us rethink how we want to use this
tool in the future.

SYNOPTIC IMPROVMENTS
Synoptic Display received a number of runtime and

design-time enhancements, which allow us to use it in a
conventional fashion – as a synoptic display - as well as a
replacement for simpler, custom written applications.
These improvements range from simple additions, which
ease the display development process, to fundamental
overhauls, which significantly change the way, both
runtime and design-time mechanisms behave. The
following sections outline the most significant of those
changes.

Property IO
The most important addition to the Synoptic Display

was the way the data is treated as it flows between
components. In the original design, data context is bound
to the input and output pins, which serve as the end points
for component data IO. These pins have neither context
nor any other additional discernable properties, which
makes components one-dimensional. Furthermore, it
makes their state management difficult without tacking on
additional information to the existing value transfer
objects. This approach is inadvisable, because more
generic, simpler data constructs promote component
reusability. Their complex counterparts usually tie in with
a select group of components.

In order to allow for more elaborate displays, which

mimic behavior of custom written applications,
components have to be able to differentiate between
different data properties and act accordingly based on
their content. The implementation of this feature called
for a change in the Pin and Property component
configuration. The former construct received one
additional member called function, which can be one of
the following two values 1) Data – default, old behavior,
2) Property – new behavior, property data. Component
properties, which drive the context for the IO pins also
received additional parameters. These include:
• Scope, which can be set to design-time, runtime or

both. Most properties will fall into design-time or
both design and runtime categories. An example of a
runtime only property is a “Trigger” property, which
acts on a boolean input only at runtime and would
provide no additional value during a display design
process.

• IO, which can be set to input, output or both. This
parameter defines the types of pins this parent
property can be applied to. “Trigger” mentioned in
the point above would be input only.

Figure 1 shows an example of a simple display, which
showcases the core concepts of property IO. Two pieces
of data are acquired from the control system. One of them
is the current value of a device object and the other one
are the legal values associated with the fetched value
property. These are fed to the two property inputs in the
List component – “Values” pin receives the list of all
possible values and displays them in the list, while the
“Selection” pin receives the current selection. Additional
“Filter” input is used to filter out unwanted options from
the List component. This pin is fed from a data output of
an Input Field.

Figure 1: Property IO example. __

*Work supported by Brookhaven Science Associates, LLC under contract
no. DE-AC02-98CH10886 with the U.S.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC131

User Interfaces and Tools

ISBN 978-3-95450-139-7

893 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Embedded Components & Namespaces
Although the original design supported embedded

components, we found them lacking and unsuitable for
abstraction of our control system. One key feature that
was missing was targeting specific components in child
displays from either its siblings or a parent container and
vice versa.

The solution comes in a form of global transfer
components and associated namespaces, which are now
part of a property set of every embeddable component,
and which can send and receive arbitrary pieces of data
between every display level. Synoptic Display designer
routes data from either a root or an embedded display to a
“Global Property” component, which via a design/runtime
property targets another component property with a
matching namespace and name. Figure 2 shows property
sheet editor of a ”Global Property” instance, which routes
incoming data to a component property aliased to
“comboboxSelection” located in an embedded display
with a “tab1” namespace.

Figure 2: Global properties.

Additional improvements to the embeddable Synoptic
subsystem come in a form of additional components,
which now include: 1) Tab Layout, 2) Split Pane and 3)
Original Embedded Display.

Component Palette
Synoptic display component palette has been

supplemented by dozens of brand new widgets and
runtime components and component families.
• 2D and 3D Chart widgets based on the JClass [3]

charting framework. These terminating components
can be prepended with a specialized DataSet
components, which attach additional design or
runtime properties to the outgoing data, such as
color, marker style, line width, visibility or axis
association.

• Image display and processing widgets, which include
both UI components for displaying static images in
various formats as well as a number of filter
components, which when chained together transform
various properties of the transferred image data.
Figure 3 shows an example of image filtering. The
top image viewer widget shows an unmodified image
read from a file, while the bottom one shows the
same image, which had been post filtered (color
inverted and vertically flipped).

Figure 3: Image filtering.

• Data Acquisition components, which were designed
from scratch with the Collider Accelerator control
system in mind. These components are responsible
for data I/O to and from device objects and logging
system.

• Scripting components based on Java Scripting
Engine [4]. These widgets come in Javascript and
Python flavors and feature multiplexed pin I/O,
which allows designers to feed and extract multiple
named results from the script components.

• UI widgets, which have been supplemented by
number of additional components such as tab panes,
progress bar, split panes and many more.

• Data widgets, which have been split into several
subcategories - each dealing with a specific data
type, such as arrays, strings, booleans and generic
types. Figure 4 shows three example array specific
components: 1) Array Length, 2) Array Index and 3)
Array Min and Max.

Figure 4: Example array data components.

• Synoptic display widgets, such as gauges. Figure 5
shows an example of a new circular gauge.

TUPPC131 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

894C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

Figure 5: Circular gauge.

Builder Enhancements
Synoptic builder has also received a number of updates,

which fall into two categories: general user experience
and control system integration. The former are designed
to ease display design process - particularly for complex
displays, while the latter incorporate existing tools and
features into Synoptic display making it easier for
seasoned CAD personnel to transition into this new
environment. Key amendments include:
• Layer support, which allows users to place

components inside lockable and hide-able layers.
This feature supplements the original “Hide
Invisible” command, which allowed users to
show/hide components, which have no user interface
at runtime. Figure 6 shows a layer window for the
Elens power supply control synoptic display.

• Device selector tool, which enables users to quickly
associate control system device names with the data
acquisition components.

• Alignment commands, which promote per pixel
accurate component location and size mapping.

• Collider Accelerator specific file repository.

Figure 6: Layer window.

EXAMPLES
 Synoptic Display’s open architecture makes it a great

tool for almost any UI project, which integrates with the
control system. It works well for both simple feedback
type displays as well as complex projects, which require
stateful representation of remote objects. Even though
Collider Accelerator development began only nine
months ago, it has already been successfully used in
several projects.
• EBIS synoptic display suite, which features tabbed

environments, transparent buttons (to allow a portion
of an underlying image to act as the button graphic,
or a part of it), the passing of global variables over
tabbed spaces, the ability to invoke operational
sequences, and functions to allow display features to
change with parameter range limits. The EBIS
synoptic display application displays a top view of
all the EBIS systems, with links to parametric display
pages (pet pages), and summaries of various system
parameters. Each tab takes the user to specific
subsystems, such as vacuum, instrumentation, or ion
source specific interfaces.

• Elens Power Supply Control (Fig. 7) - a fairly
complicated display, which utilizes image filtering
features to overlay and map power supply current
measurements as color value on the instrument cross-
section. It also features an animated beam, which
was implemented using transparent image sequences.
The bottom part of the display is made up of around
50 control points, which receive and send data
from/to various UI widgets. The sheer number of
pins and widgets, which overlay on top of each other
in this display, had forced us to add layer support to
Synoptic Display to categorize and compartmentalize
components into logical groups.

• NSRL XDAS Control – an application style display,
which allows users to controls and visualize data
from individual SWIC like devices. This display
makes heavy use of both 2D and 3D charting
widgets. It also has multiple modes of operations,
which are implemented as groups of toggle-able
widgets.

• AGS RF Cavity Tuning is another example of an
application style display. In the AGS there are 10 RF
cavities, all are controlled independently but by
identical means. This repetitive behavior exploits the
use of Global Property/Namespace enhancements,
making what would be an extremely complicated
display very simple.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC131

User Interfaces and Tools

ISBN 978-3-95450-139-7

895 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 7: Elens synoptic display.

SUMMARY
Given a relatively modest amount of time spent on the

controls integration and additional feature development,
Synoptic Display deployment can already be declared as a
successful venture. It has been used by both engineers
from various groups and operators to develop both trivial
as well as complex displays. Of course compared to other
tools used around the Collider Accelerator Department it
has still relatively low penetration – nevertheless we are
optimistic about its future.

As we are gauging personnel interest in this tool, we
are also thinking about potential improvements, which
would stimulate its further growth. Here’s a laundry list of
upcoming Synoptic related projects:
• Web deployment with offline rendering for non-SVG

components.
• Integration with existing Java applications, where

Synoptic displays can be embedded within existing
Swing applications. This integration will not be skin-
deep. We are planning on implementing full data
pathways and in and out of those displays.

• Additional high quality visualization widgets such as
linear gauges, valves and thermometers.

• More layout and UI placement options. Right now in
addition to the standard fixed layout, Synoptic
Display supports container relative layouts on all
four sides of the widget. We want to supplement this

feature by adding more options, such as sibling
relative layout.

• Improved error handling. Synoptic Display Viewer
has already been supplemented with a message area,
which displays all runtime errors. We want to
improve on that by adding error contexts to
individual widgets.

Synoptic Display is not an end all solution to all
problems facing developers and engineers, who are
building new applications for the accelerator complex. In
cases where clients have to handle the bulk of the
“business logic”, it’s downright unsuitable. On the other
hand, it works great for projects with a middleware layer,
which offloads the intricate logic from the user facing
client tier.

REFERENCES
[1] http://controlsystemstudio.github.io/
[2] T. Bolshakov, A. Petrov and S. Lackey Synoptic

Display – A Client-Server System for Graphical Data
Representation, ICALEPCS (2003).

[3] http://www.quest.com/jclass/
[4] http://docs.oracle.com/javase/6/docs/technotes/guides

/scripting/programmer_guide/

TUPPC131 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

896C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

