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Abstract 
Multiple cameras are integrated into the Accelerator 

Control System (ACSys) utilizing an Erlang framework.  
Message passing is implemented to provide access into 
C++ methods.  The framework runs in a multi-core 
processor running Scientific Linux.  The system provides 
full access to any 3 cameras out of approximately 20 
cameras collecting 5 Hz frames.  JPEG images in memory 
or as files are provided for visual information.  PNG files 
are provided in memory or as files for analysis.  
Histograms over the X & Y coordinates are filtered and 
analyzed using Root.  This implementation is described 
and the framework is evaluated. 

INTRODUCTION 
The Fermilab control system’s [1] [2] camera 

implementation consists of a 1U X86 multi-core computer 
connecting a dedicated 1G Ethernet to several Prosilica 
cameras.  A framework written in Erlang runs on a 
Scientific Linux (32-bit or 64-bit) operating system to 
provide access and control to the control system.  The 
user has the choice of writing interfaces for data 
acquisition in either Erlang or C++ .   

The utilization of cameras for instrumentation has 
evolved with research and development of electron 
accelerators.  The application is targeted for the test 
facility proposed as ASTA [3] (Advanced 
Superconducting Test Accelerator).  The cameras range is 
between 1.3 megapixel to 5 megapixel with up to 12-bit 
resolution. 

REQUIREMENTS 
The following is a summary of the important 

requirements.  The requirements document [4] specifies 
up to 3 cameras can capture and write to disk loss-less 
PNG images at 1Hz without gaps.  The cameras can be 
triggered with any clock event plus delay.  These images 
must be accessible via the control system as well as 
available to the user for off-line analysis.  The images 
must have the capability for background subtraction.  
Histograms of the X and Y axis will be evaluated with a 
Gaussian fit providing the mean, standard deviation, peak 
intensity, sigma, and “goodness of fit.”  Essentially, all the 
available control and read back functions available via the 
camera interface should map to parameters accessible by 
the control system.  

ERLANG INTERFACE 
The Erlang-based front end framework [5] provides a 

very reliable interface for C++ via  a standard Erlang-C 
message passing protocol.  The framework provides a set 
of generic functionality to monitor and control the 
framework itself.   

The user adds functionality via a configuration file as in 
Figure 1.  This file loads the added functionality (5 
methods in this case) to the framework.  The integer 35 in 
Figure 1 is the object id used by the request to route the 
query to the correct method.  The data is typed with a 
maximum return size which is checked by the framework.  
The method is specified with associated descriptive text. 

 
{daq,  
    [{apps,[]}, 
   {device_list, [ 
    {35, cexternal, {"prosilica",cdev, ["nothing"]            
     [{'UInt32',256,readData,"Prosilica Rd"}          
      {‘Char',32768,readDataArray,"Prosilica Ascii"}, 
      {'Float',256,readsetData,"Prosilica Rd/Wt"}, 
      {'UInt32',4096,readDataArray32,"Prosilica UI32"}, 
      {'Float',4096,readDataArrayFP,"Prosilica FP"}]}} 
     ]} 
   ] 

Figure 1: Configuration file. 
The user’s code registers these callbacks as in Figure 2.  

The methods are passed request information to index the 
data to be returned or set.  The framework automatically 
detects illegal requests before it can be received by the 
user’s methods.  The framework enables the user to easily 
add devices for all attributes of the control system. 

 
registerMethods(0,*this,&prosilica::readData, 
                            &prosilica::setData); 
registerMethods(1,*this,&prosilica::readDataArray, 
                            &prosilica::setDataArray,8192*32); 
registerMethods(2,*this,&prosilica::readsetfpData, 
                            &prosilica::setfpData); 
registerMethods(3,*this,&prosilica::readDataArray32, 
                            &prosilica::setDataArray32,8192*32); 
registerMethods(4,*this,&prosilica::readDataArrayFP, 
                            &prosilica::setDataArrayFP,(4096+11)*32) 

Figure 2: User callbacks. 
To track status and errors, the framework provides a 

revolving set of log files for user diagnostics.  Also, the 
Erlang framework provides alarm announcements to the 
owner’s email every 12 hours reporting potential 
problems or abnormal behaviour. 

_____________________________ 

†Operated by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the United States Department of Energy. 
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CAMERA IMPLEMENTATION 
The camera front end utilizes the Erlang framework as 

well as several C++ libraries to complete the solution.   
All of the camera specific code is written in C++.  Each 
active camera (up to 3) instance has a prosilica class 
instantiated.  This creates a unique object id 
corresponding to the instantiated class. 

The following describes how the libraries were utilized 
to make up the implementation. 

PvLib 
Allied[6], the manufacture of the Prosilica camera, 

provides a library called the PvAPI driver.  This library 
provides a proprietary interface to Prosilica cameras with 
varying attributes depending on the camera model. 

Since other manufacturers were evaluated, an attempt 
was made to use a camera “agnostic” library via the 
GenICam Standard [7].  This proved to be difficult since 
the manufacturers did not embrace the interface at the 
user API. A class was created for the Prosilica cameras 
utilizing the PvLIb enabling a camera specific class for 
each unique camera manufacturer.  Currently, the 
software only implements a single vendor solution. 

Recently an additional library, “VIMBA” [8], has been 
implemented for the Prosilica camera following the 
GenTL Specification that compiles to the GenICam 
Standard.  Although we have not yet investigated this 
interface, the library potentially offers a generic interface 
for multiple manufacturers. 

Most of the controls for the camera are directly 
available in the hardware.  The hardware ROI (region of 
interest) and binning posed the most difficult to manage 
for the user.  First, when binning is implemented in 
hardware, the pixels are all added to provide a brighter 
pixel and the image gets brighter.  To keep the image the 
same, software binning conditionally averages or drops 
pixels.  The software binning does not affect the actually 
image collected for archiving and future analysis.  It only 
affects the memory image primarily available for display.  
Also, the corresponding software ROI affects only the 
memory image.  The image sent to disk contains the 
entire hardware image.  These software controls enable 
the user to manipulate the image for display without 
affecting the quality and content of the image for analysis. 

wxLib 
As part of the early development, it was desirable to see 

the image.  The wxWidgets [9] library was used to 
provide a X11 display on a specified IP address.  This 
provided a temporary display for focusing and 
understanding the image until applications could be 
developed.   

While the wxWidgets library successfully displayed 1 
Hz full resolution images and provided a raw file image 
for diagnostics, the feature suffered from not being able to 
restart the environment redirecting the display to a new IP 
address.   Thus, the implementaion is conditionally turned 
off at this time. 

PngLib 
PNG [10] files are used to provide a loss-less 

compressed image either in memory or written to disk.  
Ten writer tasks are available to accept a queue of images 
(up to 100).  After the specified number of images is 
collected, the writer tasks asynchronously processes an 
image from the queue until all are done.  The files are 
written to a user specified directory on the local drive.  
This directory becomes the user’s image run with unique 
filenames based on the time and date.  

A secure mechanism is provided to transfer the entire 
directory of files to any user’s local disk.  A parameter is 
set to create a tar-ball of the directory saved into an NFS 
mounted directory.  Any browser can then upload the tar-
ball into the local machine for off-line analysis. 

One-shot PNG files can be written to memory and 
acquired over the network by the control system.  For 
diagnostics and analysis, these images may also be 
written to disk. 

Since the compression of PNG files is compute-
intensive, no files are written until all requested images 
are captured to prevent data collection errors returned by 
the PvLib.  The error correlates to high CPU utilization 
and the fundamental cause is not understood at this time.  
The upgrade from 2 cores to 8 cores may eliminate this 
problem. 

JpegLib 
JPEG [11] files are used to provide comfort displays for 

focusing and image location.  JPEG files can be 
significantly compressed, but image data is lost 
depending on the quality (1-99) requested.  The JPEG 
image conditionally can be sent to disk consisting of the 
last 10 images for diagnostics. 

Generally, the JPEG images are kept in memory for 
control system access.  A maximum size can be specified 
to optimize the control system’s access to a single request 
for data (typically 32000 bytes).  When the max size is 
specified, a heuristic is invoked to change the image size 
by modifying the quality and software binning of the 
image.  The software bin can either be the average of a 
square pixel or a selected single point within the square.  
Further, to minimize the size or increase the quality, the 
user can specify the software ROI.   

Root 
ROOT [12] is the physic analysis package maintained 

by CERN and supported at Fermilab.  There is a high 
confidence in the results of ROOT and ROOT can adjust 
its boundaries to provide a focused region for the fit.  
Also, ROOT can easily change the type of fit with a 
slightly modified algorithm if desired. 

CAMERA APPLICATIONS 
There are effectively three applications.  The primary 

user application is written in Java and can run either 
natively or on a console server.  This application makes 
use of the JPEG image for feedback to the user and can 
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manipulate all aspects of the camera.  It can save and 
display one-shot PNG files. It displays histogram plots 
and provides local analysis of the histogram Gaussian fit 
contrasting the front end’s fit analysis. 

The ACSys parameter page can manipulate all 
parameters and provides access to generic parameters for 
the Erlang framework.  This provides immediate access to 
all parameters in a standard application. 

A set of synoptic displays [13] [14] provides an easy 
way to check the selected camera’s information.  It also 
provides histogram plots, Gaussian fit plots and the 
Gaussian analysis. 

RESULTS 
The camera system has been used to see the first beam 

achieved this summer [15]. The camera system has been 
improved to accommodate operational needs and is 
becoming an integral instrument for measuring the beam. 

The utilization of software versus hardware ROI and 
binning is an effective mechanism to reduce the data size 
without sacrificing the quality of the image files. 

The Erlang framework has proven to be very mature 
and robust.  Erlang is a functional language that 
minimizes many run-time failures.  Most of the failures 
have been attributable to the C++ coding and the 
utilization of the C++ libraries.  As a user of the 
framework, these are the errors I expect, tolerate and fix.  
Thus, the framework has been a pleasant experience to 
integrate my C++ application into the control system. 
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