
NSLS II MIDDLELAYER SERVICES* 

Guobao Shen#, Yong Hu, Marty Kraimer, Shroff Kunal, BNL, Upton, NY 11973, USA  
Dejan Dezman, Cosylab, Ljubljana, Slovenia

Abstract 
A service-oriented architecture has been designed. It 

will be used for commissioning and daily operation of the 
NSLS II project. Middle layer services are being 
developed, and some have been deployed into NSLS II 
control network to support our beam commissioning. The 
services are primarily based on 2 technologies: web-
service/RESTful and EPICS V4. The services provide 
functions to take machine status snapshot, convert magnet 
setting between different unit systems, and provide lattice 
information and simulation results. This paper presents 
the latest status of services, and our future development 
plan. 

INTRODUCTION 
Beginning with the early stage of NSLS II (National 

Synchrotron Light Source II) project [1], a middle layer 
service based architecture has been designed to support 
high level applications ranging from physics applications 
to control room beam operation. With this architecture, 
we are able to replace the more traditional monolithic 
high level application approach. This allows a narrow 
client API. With the narrow API, existing applications 
developed in different language under different 
architecture have been ported to our platform with 
minimum effort. 

Some services already [2, 3] provide solid to support 
for high level physics application [4] development. Some 
are already deployed in our control network support beam 
commissioning and physics study.  

This paper is arranged as below: 1) A description of the 
system architecture; 2) MASAR (MAchine Snapshot, 
Archiving, and Retrieve) service; 3) learning experience 
from NSLS II machine commissioning; 4) MUNICONV 
(Multiple UNIt CONVersion); 5) Lattice/Model service; 
and 6) summary and conclusion.  

SYSTEM ARCHITECTURE 
As described above, middle layer service has been 

developing to support high-level application from beam 
commissioning to beam operation. Like most modern 
control systems for large scale experimental facilities, the 
control system of NSLS II project is 3-tier based 
architecture as shown as Fig. 1. 

The 3-tier consists of 1) distributed front-end layer, 2) 
middle service layer, and 3) application layer 
respectively. A description of these 3 tiers was discussed 
in [3], and the 2nd layer has been updated and revised 

during our development by introducing a HTTP/REST 
protocol. 

 

Figure 1: System architecture. 

MASAR SERVICE 
MASAR service takes a machine snapshot with pre-

configuration, archives a snapshot, and retrieves data back 
for post analysis, and/or to restore machine to a particular 
state. The architecture is illustrated in Fig. 2. 

 

Figure 2: MASAR service. 

 Service Implementation 
As shown in Fig.2, MASAR service uses SQLite [5] as 

the RDB (Relational Database) to store configuration and 
snapshot data. Access to SQLite is via a Python based API 
library called PYMASAY.  

MASAR takes a machine snapshot using a pre-defined 
configuration. Each configuration is a collection of 
EPICS PV (Process Variable) names, Each configuration 
is saved into the RDB. 

MASAR supports all scalar and waveform PV types 
e.g. float, double, string, and enum. Each configuration 
could be a mix of any of the types.  

 ___________________________________________  

*Work supported under auspices of the U.S. Department of Energy 
under Contract No. DE-AC02-98CH10886 with Brookhaven Science 
Associates, LLC, and in part by the DOE Contract DE-AC02-
76SF00515 
#shengb@bnl.gov 

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC155

Software Technology Evolution

ISBN 978-3-95450-139-7

467 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Commands from client are analysed by the service 
engine, which is implemented via EPICS V4 framework 
[6] in C++. A DSL-PY (Data Service Layer in Python) 
module is provided to manage data between C++ and 
Python Domain. 

With a pre-defined configuration, a client can request 
MASAR to take a machine snapshot. Once the service 
engine gets a request, it retrieves the PV list for given 
configuration from SQLite, requests Gather library (a 
local Channel Access library implemented in C++ to 
gather PV data) to get data for each PV, and saves data 
into RDB via PYMASAR. In addition to the value, the 
connection status, time stamp, alarm severity, and alarm 
status for each PV is also saved. 

MASAR provides a mechanism to allow user to 
preview a saved data set to make sure the data set is exact 
what is desired. By default, MASAR flags a data set as 
not approved. User has to explicitly approve one data set 
as good. 

The data is transferred over network using V4 
communication mechanism of pvAccess/channelRPC. 

As shown in Fig. 2, MASAR only reads value from 
IOC, i.e, a restore function is left out of server side. This 
keeps the service simple and general because restoring 
procedures are usually complicated, and vary from system 
to system, facility to facility. A basic restore function is 
implemented inside MASR UI. 

Client API 
MASAR client library provides 7 APIs in Python as 

shown in Table 1. 

Table 1: MASAR Client Interface 

API Description 

retrieveSystemList Retrieve a list of system 

retrieveServiceConfigs Retrieve a list of configuration 

retrieveServiceEvents Retrieve snapshot list w/o data 

retrieveSnapshot Retrieve one snapshot with data 

saveSnapshot Save/take a snapshot 

updateSnapshotEvent Update/Approve snapshot 

getLiveMachine Get machine live data 

Those 7 APIs provide interfaces for communication 
with MASAR. As shown in Fig. 2, user can use these 
APIs directly in their application, and a high level API is 
planned for next version for functions like comparing 
multiple data sets. Integration with CSS (Control System 
Studio) is under development.  

User Interface 
A PyQt4 based user interface has been developed on 

the top of client API, and is serving our beam 
commissioning. It provided a convenient way to the end 
user to take machine snapshots, browser data, and 
compare data with either live machine, or archived 
snapshot data set. An example is illustrated as Fig. 3. 

Figure 3: MASAR UI. 

The table of left pane upper window of Fig. 3 shows all 
configurations belong to one or all systems. User can 
select one or multiple configurations. Snapshot header 
information belonging to selected configuration(s) is then 
listed as shown in the bottom table of Fig. 3. 

The user can either browse a saved data set, or compare 
them by selecting one or multiple snapshots. Fig. 3 shows 
a result to compare 4 data sets.  

Since the restore function is left out of MASAR server 
side, a basic restore function is implemented in this UI: 
 Mark PVs not to restore for those were not connected 

when the snapshot was taken; 
 Check all PVs connectivity, and mark them as 

problem PVs if they can not be connected; 
 Restore all PVs in good conditions, and recheck all 

problem PVs; 
 Restore PVs if any problem PV is back to normal; 
 Report the not restored PVs. 
One more useful function provided by this UI is to 

allow user to export a data set into a CSV file. This is 
useful for performing off-line analysis. 

Experience at NSLS II 

 

Figure 4: MASAR Snapshots analysis. 

MOPPC155 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

468C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



The MASAR service has been deployed into our 
control network, and has been used for beam 
commissioning since Apr 2012. Up to now, there were 
369 snapshots taken, and 108 snapshots have been 
approved to be good as shown in Fig. 4.  

 Since all data is currently saved into SQLite database, 
a concern is the SQLite data file size growing with time. 
An analysis about the database size growing at NSLS II 
project has been monitored, and the result is shown as 
Fig. 5. The file size was taken during regular 
maintenance. Therefore, there might have more than one 
snapshot at each time point, or does not have anything.  

 

Figure 5: MASAR RDB size growing. 

As shown in Fig. 5, there are 2 significant database size 
increases. Those increases were caused by 5 snapshots for 
power supply ramping table of our booster ring. That 
configuration contains over 60 PVs for booster ring 
power supplies, and each PV is a waveform with over 
10,000 points.  

Our experience with MASAR at NSLS II project shows 
that the current implementation can satisfy the 
requirements of beam commissioning even with many 
large waveform data. However, to solve this concern, we 
are planning to shift data set itself out of SQLite database. 
Since PYMASAR isolates underneath RDB and server, 
this change will be transparent to service engine, and 
therefore client. 

MUNICONV SERVICE 
Another recently released service is MUNICONV 

(multiple purpose unit conversion). This service is 
implemented as a RESTful web service using Django 
framework [7], and its architecture is illustrated as Fig. 6. 

Service Implementation 
The first implementation supports conversion of 

magnet values between 3 unit systems: 1) i value, which 
is engineering value, power supply current usually; 2) b 
value, which is magnetic field; and 3) k value, which is 
the value used by simulation code. 

Figure 6: MUNICONV service. 

 As shown in Fig.6, MUNICONV service uses MySQL 
as the RDB (Relational Database). The following 
information is stored in RDB: 
 Device information. A device can be in inventory or 

installed. If a device is in inventory, its serial 
number, and component type is required to find it. If 
a device has been installed already, it normally has a 
name and is assigned to a system. Thus a client can 
find it via the system name and device name.  

 Magnet measurement data. This provides 
fundamental conversion information between 
engineering unit and magnetic field.  

 Algorithm to perform a conversion. This information 
provides direct information for conversion value 
between (i, b, k) unit systems. According the 
requirement, the conversion is predefined between 
systems, and could use measurement data with a 
well-defined numerical algorithm, or an equation 
generated in advance. 

A Python data API provides a full access to MySQL 
database. Like MASAR, this API layer isolates MySQL 
and the data process layer. It makes RDB schema changes 
transparent and provides flexibility to plug in another 
RDBMS.  

The data processing layer responses commands from 
the upper layer, gets required data from database, and 
converts value from source unit to destination unit if 
needed information is available, and returns data back to 
the upper layer. 

As shown in Fig. 6, the service under Django 
framework has been implemented, and a web interface 
has been developed. Meanwhile we are planning to 
embed the conversion function into a V3 IOC to conduct 
a real time conversion for our power supply.  

The integration with EPICS V4 has been planned, and 
will be developed in its next release. 

 Client API and User Interface 
A client can access MUNICONV service via RESTful 

interface, and 2 different implementations: 1) Python API, 
and 2) Web UI. Web UI access is demonstrated in Fig. 7.   

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC155

Software Technology Evolution

ISBN 978-3-95450-139-7

469 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



 

Figure 7: MUNICONV Web UI. 

A device can be searched via the inventory, or via 
installation as shown on left pane in Fig. 7. All devices 
found are listed in the middle pane. By selecting a 
particular device, its conversion information is displayed 
on the right pane.  With the conversion information, user 
could select desired conversion between different unit 
systems, give an initial value, and request a conversion. 
The conversion result will be displayed in the result table.  

Currently, all NSLS II magnets data (LINAC through 
storage ring) has been loaded into the database. 

LATTICE/MODEL SERVICE 
As its name indicated, this lattice/model service 

consists of 2 parts: lattice and model. The lattice part 
captures element geometric information (layout with 
misalignment), and magnetic strength of each element if it 
is provided. A lattice could be from any source such as 
design release, a study scenario, or a physical installation 
and real measurement.  

The model part captures beam parameters such as twiss 
parameters, closed orbit, and transfer matrix for each 
element, and global parameters like tune, beam energy, 
chromaticity (up to 2nd order). It could be results from 
simulation or from measurement. 

Service Implementation 
Service is implemented under Django framework as 

illustrated in Fig. 8. The MySQL schema is a 
collaboration result [8]. In addition to capturing 
lattice/model results, this lattice/model service provides 
capability to conduct a quick simulation, and save the 
simulation result in model domain. Two simulation codes, 
Tracy-III and elegant, are supported.  

Expanding to EPICS V4 is planned, and will be 
implemented in the near future.  

Client API and User interface 
The service provides a RESTful interface to client, and 

the development for Python API is on going, followed by 
Web UI, and Java API. 

Figure 8: Lattice/model service. 

SUMMARY 
Middle layer services are being developed at NSLS II. 

Implementation details and status of the MASAR, 
MUNICONV, Lattice/Model, have been discussed. 
Experience using those services has been summarized. 
Future development plan has been discussed. 

ACKNOWLEDGMENT 
The authors would like to thank the EPICS V4 working 

group for their contributions, especially Matej Sekoranja 
at COSYLAY, and Michael Davidsaver at BNL. The 
authors also thank Don Dohan at BNL for his wonderful 
suggestion and kindness to share the IRMIS schema. 
Meanwhile, the authors want to thank the DISCS team for 
their helpful discussion on database. Finally, but not the 
last, the authors want to thank our colleagues at BNL for 
their suggestions, and feedback. 

REFERENCES 
[1] G. Shen, “A Software Architecture for High Level 

Applications”, Proceedings of PAC09 (2009), May 
2009, Vancouver Canada, FR5REP004 

[2] G. Shen, et al., “NSLS-II High Level Application 
Infrastructure and Client API Design”, Proceedings 
of PAC 2011, New York USA, 2011, MOP250, p. 
582;  

[3] G. Shen, et al., “Server Development for NSLS-II 
Physics Applications and Performance Analysis”, 
Proceedings of PAC 2011, New York USA, 2011, 
MOP252, p. 585 

[4] L. Yang, et al., “The Design of NSLS-II High Level 
Physics Applications”, these proceedings, 
TUPPC130 

[5]  http://www.sqlite.org/ 
[6] T. Korhonen, et al., “EPICS V4 Progress Report”, 

these proceedings, TUCOCB04 
[7] https://www.djangoproject.com/ 
[8] P. Chu, et al., “Accelerator Lattice and Model 

Services”, this proceeding, TUPPC152 

MOPPC155 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

470C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


